Firmware Studio User's Manual

 Appendix F. SPIX protocol

The SPIX bus:
The SPIX bus is a 4-wire SPI bus that uses a special protocol to allow multiplexed operation. Individual SPI devices are addressed by exploiting the state transitions that are unused in normal SPI operation.

Specified to operate at 100 kHz, the bus is designed to use low cost parts and require neither interrupts, tight timing nor a UART.

Functional units (let’s call them boxes) on the SPIX bus are daisy chained. All signals feed straight through except for SS, which is delayed by a D flip flop. A chain of boxes forms a shift register. While SCK is low, the host can twiddle MOSI so as to clear this shift register or clock in a bit pattern that addresses the desired box.

Socket View
Pin#
Upstream connector
Downstream connector

[image: image1.png]
1
SS-in
SS-out

2
+5V
+5V

3
MOSI
MOSI

4
GND
GND

5
SCK
SCK

6
MISO
MISO

When a box contains multiple SPI devices, it addresses individual SPI devices by either decoding more state transitions in hardware or implementing a link protocol using a microcontroller. A box can contain a few SPI peripherals and some decoding logic (no micro) if communication errors won’t be a problem.

Each box is assumed to contain an SPI type serial EEPROM containing boot code, or a microcontroller that emulates such an EEPROM.

I implemented some SPIX compatible LCD displays using an SPI type serial EEPROM and an Atmel ATF750LC programmable logic device. This particular CPLD has the footprint of a 22V10 but with higher logic density and independent clock terms. The asynchronous nature of the state decoder made independent clocks necessary, which ruled out using simple PLDs such as a 22V10 or smaller.

The Atmel ATF750LC allowed me to implement a simple SPI interface and some parallel I/O lines, fitting all of the logic onto one chip. The logic is simple enough to economically implement with discrete logic parts if necessary.

Bit errors aren’t handled by the SPIX bus. You can re-read an input as a sanity check, but you have to remember that outgoing data may be corrupted by noise or ESD events. The only way around this is to use a microcontroller to implement a link protocol on the slave device.

The slave’s boot EEPROM can be re-read, so errors can be eliminated there. Boot code in an error correcting device could modify the I/O routines such that they include a link protocol when talking to the error correcting device. As it stands, the CPLD based decoder doesn't do error correction. It does, however, echo back incoming data so that the SPI firmware can re-send the data before latching it.

The SPIX driver code illustrates the sequencing of the control lines. See the file SPIX.F51 in the SPIX8051 folder.

.

pg F.2

