Firmware Studio User's Manual

08/09/01
Firmware Studio User's Manual

68K / ColdFire Virtual Machine

68000-based virtual machine

The 68000/ColdFire virtual machine uses subroutine threading with inlining. A peephole optimizer omits the useless code combinations that sometimes result when consecutive words are inlined. Cells are 32-bit. Code and data are aligned on 4-byte boundaries. From a programmer's perspective, the ColdFire is like a stripped down 68000 optimized for long data. It allows only long operations with most instructions, has some address mode restrictions and removes some obsolete instructions.

The Coldfire has better hardware multiply than 68K but not as good as CPU32. It has no hardware divide (shorter interrupt latency), so division will be slow.

The file DEMOCF.FF demonstrates virtual machines for the 68332 and the MCF5307.

Coldfire:

To demonstrate the Coldfire virtual machine, you'll need Motorola's MCF5307 evaluation board and at least one PC. The board's AUX port talks to Firmware Studio, the TERMINAL port talks to a terminal. Two PCs on a network is good for development, since you can make code on one PC and test it on the other.

FLOAD the file DEMOCF.FF to create a s-record file TEST.S suitable for running on Motorola's MCF5307 evaluation board. Connect a PC running a terminal program (19200,n,8,1) to the terminal port. From the terminal program, enter DL to start downloading code to the evaluation board. Send the TEST.S file when prompted by the EVS debugger. When the download is complete, type GO 20000 to start the virtual machine. If you're using a version of the EVS debugger older than V1.3.4 (very unlikely), use the DOS command COPY TEST.S+TEST.S TEST.SS and remove the first S8 record in TEST.SS to make a file that will download correctly. I tested with an old Arnewsh evaluation board.

Connect the PC with Firmware Studio on it to the evaluation board's auxiliary serial port.

68332:

Change the board type (at the top of the file DEMOCF.FF) to 2. FLOAD the file as described above to create a ROM image. Connect a PC running a terminal program (9600,n,8,1) to the terminal port. From the terminal program, enter LO to start the downloading mode. Send the TEST.S file. When the upload is complete, hit carriage return a couple of times until you see the prompt. Type GO to start the virtual machine.

At this point, you can click on the "connect" button or any of the hex dump buttons and Firmware Studio will look on Com ports 1 through 4 for the target board and will auto-baud at 2, 4, 14, 19, 38, 57 or 115 kbps. The demo uses 115K, of course. Once communications has been established, the personality of the target board is read out so that Firmware Studio can send the appropriate commands to the target board.

After building a ROM image, token assignment and addresses of each word are known. If you start up Firmware Studio without building a ROM image, you FLOAD the header file ROM.HH to build up the token list. Type TE to enter the test mode, which lets you interactively test words on the target board. Click the "Virtual Console" button (the dumb terminal icon) to open the virtual console window.

Type -1 u. and 4294967295 will pop up in the console window. The virtual console is a section of memory on the target board used to simulate a console. Firmware Studio continually reads this memory and displays its contents in the window.

BUG MYWORD invokes a high level debugger, which opens the source file containing MYWORD and lets you step through the code. You can switch back and forth between the debug window and the console by clicking the mouse, but be careful where you click in the debugger since click is used to reposition the "instruction pointer".

The low-level debugger for the 68K/ColdFire allows you to single step instructions in order to debug code words. The registers shown on the left side of the window aren't the real registers. They are a register image that is swapped out with the real registers before and after an instruction is executed. The main program is always running, so you must be careful about stepping through code that modifies global variables. Changing the wrong thing can crash the main program. Try TRACE FOO to try out the machine debugger. Click on the NOP just before the RTS instruction, then press 'N' and watch the show.

Enter the Forthing mode by using the FI command. Now, when you type a command line, it will be processed by the tokenizer. The tokenized code will be sent to the target board and evaluated by the target board's evaluator. This mode is much like traditional Forth. The main difference is that the text source is pre-digested into its tokenized equivalent by the host, sent the target and evaluated by the target.

The files AV0.FF, AV1.FF, etc. are test files, based on the John Hayes' ANS test suite. Fload AV0.FF and observe the console window for test results. You can Fload the other AV*.FF files in sequence to verify that the kernel words are working. These tests are important to have for porting to other processors.

You can concatenate all of the AV*.FF files using the DOS copy command and tokenize and evaluate the whole thing. If you select Host Evaluation speed to be line-at-a-time, the test file will be uploaded and evaluated a line at a time. This is slow, but it’s useful if the target board hangs and you want to find the line the line that caused the problem.

You can extend the test suite to cover your own application words. Being able to periodically verify your work helps keep out bugs. Plus, the test suite serves as a functional specification.

As of version 2.08 (8/00), the ColdFire VM runs on the MCF5307 evaluation board and passes the test suite. The timebase interrupt isn't working yet, but that's more of a system function and wasn't necessary for testing. The 68332 BCC version works, including the timebase.

DEMOCF.FF builds a hyperlink index for the Winview editor. As you expand the system, you can end up with a huge number of keywords. In Winview, if you’re not sure how a word is supposed to behave, place the cursor on it and hit F9. The source code for the word will pop up. In the Firmware Studio console, you can VIEW FOO to browse the source or SEE FOO to disassemble the ROM image of the word FOO.

Performance Issues

Doing some rough comparisons, the MCF5307 at 90 MHz was five times as fast as the 68332 at 16 MHz. This sluggishness was caused by the MCF5307's cache being disabled. Code was executing from DRAM. The MCF5307 has a unified cache that can be made to work with self-modifying code, so it should be able to run a lot faster.

Cells are 32-bit, so on a 16-bit bus there is a speed penalty. Since most of your time will be spent in a small section of code, re-coding the appropriate subroutines in assembly will address the speed issue. You still get the benefit of implicit parameter passing, resulting in code that's both compact and fast.

The code optimizer is better than nothing, but much worse than the amazing optimizers that come with today’s commercial Forths. So, I tried to compensate by providing a decent assembler. It uses Motorola’s syntax, so an algorithm coded in C can be compiled to assembly and then (in theory) cut-and-pasted into your application.

PAGE

pg 3.2

