Firmware Studio User's Manual

Appendix M. Multitasker

Multitasking in Firmware Studio

Cooperative multitasking uses PAUSE to switch between active tasks. Each task has a unique task ID (tid), which is the address of the task's TCB (Task Control Block). The structure is shown below, with the offset in cells.

	Offset
	Contents
	Save/Reload sequence

	0
	SP0: initial data stack pointer
	

	1
	RP0: initial return stack pointer
	

	2
	PC: Current program counter
	1 2

	3
	SP: Current data stack pointer
	 1 2

	4
	RP: Current return stack pointer
	 1 2

	5
	Status: Lowest byte in memory = -1 to activate.
	 2

	6
	Link: points to status of the next TCB
	 1

PAUSE is the key to Forth's multitasking. A context switch is very fast because there's not much context to switch. With applications typically being I/O bound, real-time events can get quick response with low multitasking overhead. Each task must contain a PAUSE so as to share the CPU with the others. As with other things Forth, the price of this kind of performance is more responsibility on the part of the programmer.

All tasks must periodically invoke PAUSE by performing an I/O word or by executing PAUSE or STOP. STOP is like PAUSE except that it deactivates the current task before performing PAUSE.

PAUSE performs one pass around the round robin queue. Quick response to real-time events relies on rapid handoff between tasks, which PAUSE does in less than a microsecond on modern 32-bit processors.

PAUSE saves the context of task 1 and tests the new status for task 2. If this status is inactive, PAUSE skips to the next TCB and so on until it finds an active task. When an active task is found, PAUSE loads the context for the task.

Only the first byte of the status cell is used. This makes it easy to compile assembly code to wake up a task. An ISR that wants to wake up a task only needs to clear this byte. A Task called MyTask can be activated by 0 MyTask C!.

The 8051 version doesn’t have a multitasker because the stacks are pretty limited. As of 8/99, the basic 68000 multitasker is in place but the rest hasn't been defined yet. In an 8051 application, use PAUSE to handle background stuff.

One of the CPU’s registers is reserved for the task pointer. This points to offset 2 (PC) in the current TCB. PAUSE quickly traverses the task list to find the next active task. For example, the 68000 code for PAUSE is:

code PAUSE
(--)

move.l (sp)+,(tp)+
\ save PC

move.l tos,-(s)

move.l s,(tp)+

\ save data stack

move.l sp,(tp)+
\ save return stack

addq.l #4,tp

 begin
movea.l (tp),tp

\ point to next task's status

tst.l (tp)+

\ until active task is found

 until_mi subq.l #4,tp

movea.l -(tp),sp
\ load new return stack

movea.l -(tp),s
\ load new data stack

move.l (s)+,tos

move.l -(tp),a0

\ load new PC

jmp (a0) c;

The task queue consists of a circularly linked list of TCBs pointed to by a task pointer. PAUSE saves the state of the current task, looks around for an active task, and loads the state of the new task.

A task must invoke PAUSE periodically. Since most tasks are I/O bound, they tend to PAUSE a lot. Context switches occur rapidly and with low overhead. This avoids the heavy processing demands of preemptive schedulers, giving more resources to the application. One common technique is to use an ISR to handle the time critical part of a task. The ISR wakes up a task that finishes the job.

As with all things Forth, it is the programmer’s responsibility to ensure that no task monopolizes the CPU and none are starved for CPU time.

Firmware Studio multitasking words:

NEWTASK (usize ssize rsize <name> --) (-- tid)

Creates a TCB containing space for user variables, data stack and return stack. Sizes are in bytes. When evaluating tokenized code, <name> is replaced by <xt>.

ALSOTASK (tid --)

Adds a given TCB it to the circular list of tasks. The TCB is inserted into the queue's linked list between the currently executing task and the next task. You can't remove a TCB from the queue, but you can SLEEP or REASSIGN it. A word to "kill" a TCB (remove it from the queue) is feasible, but not necessary since a sleeping TCB isn't much more expensive than a dead TCB.

REASSIGN (xt tid --)

Reassign a task that's in the queue and clear its stacks.

SLEEP (tid --)

Put a task to sleep.

WAKE (tid --)

Wake up a task.

LOCAL (tid n -- a)

Access another task's user variables

PAUSE (--)

Perform one pass around the round robin queue.

STOP (--)

Sleep current task, do pause.

USER (offset --) (-- a)

Compiles a word whose runtime semantics are similar to VARIABLE but returns a base address plus offset. An offset of zero gives the address of cell 7 of the TCB.

SEMAPHORE (-<name>-)

Define a semaphore for resource arbitration. Same as VARIABLE.

SEM-GET (semaphore --)

Get a semaphore, locking out other tasks from using the resource related to this semaphore.

SEM-RELEASE (semaphore --)

Release a semaphore, allowing other tasks to access the resource related to this semaphore.

Sample usage:

 0 cells user X

 1 cells user Y

 2 cells user Z

 3 cells constant usersize

16 cells constant sstacksize

16 cells constant rstacksize

usersize sstacksize rstacksize NEWTASK taskA

usersize sstacksize rstacksize NEWTASK taskB

: TaskAdemo (--) begin X @ Y @ 2* + Z ! PAUSE again ;

: TaskBdemo (--) begin X @ Y @ - Z ! PAUSE again ;

: InitStuff (--)

taskA ALSOTASK

taskB ALSOTASK

['] TaskAdemo taskA REASSIGN

['] TaskBdemo taskB REASSIGN

taskA WAKE

taskB WAKE ;

pg M.4

