Firmware Studio User's Manual

08/09/01
Firmware Studio User's Manual

8051 Virtual Machine

8051-based virtual machine

The 8051 has several address spaces, each operated on by different instructions. Since the 8051 can't write to code memory, some glue logic is needed to overlap the code and data spaces. Figure 2 shows a sample circuit. The jumper block allows two possible configurations. Configuration A makes the RAM readable using both the MOVX and MOVC instructions. Configuration B saves you a gate but only allows the RAM to be read by a MOVC instruction. Position "A" allows you to put the data stack in external RAM while "B" requires the stack to be in internal RAM. Using an external data stack generally slows the system by 20% but frees up IRAM.

The virtual machine presented here is fairly sophisticated and flexible:

· The data stack may reside in either internal or external memory.

· For compatibility reasons, cells may be either 16 bits or 32 bits wide.

· Many Forth primitives are coded in assembly for speed.

· It includes a single stepping machine code debugger that lets you debug code words even while the main program runs at full speed.

· When performing multiply and divide operations, small operands are treated as special cases that execute much faster than full cell-wide operations.

· Variables and values are initialized from ROM upon startup.

Figure 2. Memory spaces of the 8051 virtual machine implementation.
 [image: image1.png]
Access to program memory always uses MOVC for read. Access to data memory tests bit 15 of the address and uses MOVX to read from low addresses and MOVC to read from high addresses. This allows peripherals to reside on the data bus between 0000 and 7FFF. The RD line enables I/O devices and the PSEN line enables the ROM and RAM. So, the 64K data space covers both SRAM and I/O devices.

On the 8051 virtual machine, code and data spaces don’t overlap. It was designed this way to enforce separation of these spaces during the design of the kernel and to allow access to I/O and RAM using the same memory operators.

You can use the hex dump windows to view various memory spaces:

PRIVATE
CODE
ROM is between 0000 and 7FFF

External SRAM is between 8000 and FFFF

DATA
I/O is between 0000 and 7FFF

External SRAM is between 8000 and FFFF

REG
Internal RAM is between 000 and 0FF

Special Function Registers are between 100 and 1FF

EE
An optional serial EEPROM is between 0000 and 1FFF (or whatever the size is)

Notice that in code words that access the stack, the instruction MOVY A, @R0 is used. Depending on the flag INTERNALSTACK, the assembler treats this as a MOV A, @R0 or a MOVX A, @R0. See the board configuration section of DEMO51.FF.

Firing up the target board

The target board for DEMO51.FF is based on an 8031 microcontroller. This board is easy enough to wire wrap or otherwise fabricate. You'll need a 32K x 8 static RAM, an RS232 transceiver chip, an 8031 or derivative, an EPROM and a 7404 or equivalent inverter. A 2-wire 24C01 to 24C256 serial EEPROM is optional. I recommend 22.11 or 14.75 MHz for the crystal. Specify the crystal frequency and other parameters at the beginning of DEMO51.FF.

Code in BEGIN.F51 selects the timer reload value needed to use the highest possible autobaud frequency. It picks the lowest T1 reload value that will give a baud rate error of less than 2%. The target board's UART must run at 2.4, 4.8, 14.4, 19.2, 38.4, 57.6 or 115.2 kBPS. An arbitrary crystal frequency may be used but you’ll probably end up with a low baud rate. For example, a 12.0 MHz crystal will only allow a 4800 BPS rate.

Connect the UART pins to the host's serial port (any port from Com1 to Com4) through the RS232 transceiver chip. Note that most PCs will accept a 0 to 5V swing as valid RS232 input, so for demonstration you could use a 74HC04 as the transceiver chip (100k in series with PC’s TXD line) instead of the MAX202.

Firmware Studio’s “reset” command resets the target board by dropping the DTR line (pin 4 of the PC’s DE9) for ½ second. This is a very useful feature to have in a live debugging environment.

There are all kinds of cheap 8051 development boards available. Figure 3 shows a schematic for a target board. You can wire wrap this board in just a few hours. If you're under a lot of stress, wire wrapping using a hand tool might be valuable for its therapeutic effect. An improved version of this board with SPIX bus support is available from www.tinyboot.com.

The demo program is set up for stacks in external RAM, so put a shorting block in position ‘A’ of JP1.

If the board doesn’t come up, pull the micro and short pins 10 and 11 of the socket together. Run a terminal program to verify that keystrokes echo back through the PC’s serial port. Then try it again with the micro plugged in. At the right baud rate (38400) you should see ‘R’ echoed back whenever you press a key.

Figure 3. Schematic of D51

Note: The PDF version of the manual has this page replaced with a real schematic.

The demo program was made for an 8031 system with 32K RAM, 32K ROM, an RS232 level converter, a 14.7456 MHz crystal and a single inverter for glue logic. You can make this board yourself.

The easiest way to connect the RAM is to invert A15 and use it as the chip select line so that RAM resides at 8000..FFFF. Connect WR to the 8031's WR line and OE to the 8031's PSEN line. The 8031's RD line isn't used. For an external ROM, use A15 as the ROM's chip select.

If you use the AND gate shown in Figure 1, you can place stacks in XRAM by setting InternalStack to 0 (see the file DEMO51.FF). An external stack is probably necessary if you use 32-bit cells. An internal stack seems to work well with a 16-bit Forth, but may not be safe for large applications. Of course, an 8032 would allow a much bigger internal stack.

The EEPROM's SDA line should be pulled up with a 4.7K resistor. See DEMO51.FF for pin assignments for the EEPROM. The EEPROM is optional. You don't need it to run the Firmware Studio demo. Of course, the effect is a lot better with a boot device.

FLOAD DEMO51.FF creates the object file ROM.HEX. If you change the source and want to recompile, type OK. Program the file ROM.HEX into the target board's program ROM. You can SHELL to DOS if necessary, to run your device programmer. Plug the target board into the host's serial port and apply power.

At this point, you can click on the "connect" button or any of the hex dump buttons and Firmware Studio will look on Com ports 1 through 4 for the target board and will auto-baud at 2, 4, 14, 19, 38, 57 or 115 kbps. Once communications has been established, the personality of the target board is read out so that Firmware Studio can send the appropriate commands to the target board.

The REG HEX window is one of the more interesting ones, since the numbers on the screen will be constantly changing. Addresses 000..0FF are mapped to IRAM, addresses 100..1FF are mapped to the SFRs. You can press F2 to enter edit mode, then change registers at will. Remember, the main program is running and can be crashed if you don't know what you're doing. But, it is always safe to browse.

Most windows pop up a short "Help" window if you press the F1 key. This help window disappears as soon as you "unfocus" (click outside of) it. On most windows, editable data is displayed on a white background. Pressing F2 in a Hex window toggles edit mode, in which you can enter hex or ASCII data. Pressing ESC in any popup window closes it.

After building a ROM image, token assignment and addresses of each word are known. If you start up Firmware Studio without building a ROM image, you FLOAD the header file ROM.HH to build up the token list. Type TE to enter the test mode, which lets you interactively test words on the target board. Click the "Virtual Console" button (the dumb terminal icon) to open the virtual console window.

Type -1 u. and 65535 will pop up in the console window. The virtual console is a section of memory on the target board used to simulate a console. Firmware Studio continually reads this memory and displays its contents in the window. This section of memory isn't very big. See AV0.FF for an example of how to allocate memory for a bigger console buffer.

BUG MYWORD invokes a high level debugger, which opens the source file containing MYWORD and lets you step through the code. You can switch back and forth between the debug window and the console by clicking the mouse, but be careful where you click in the debugger since click is used to reposition the "instruction pointer".

There are a lot of code words in the 8051's kernel, so that you can get decent speed using Forth. Subroutine threading is used for speed at the expense of code size. A traditional inner interpreter is painfully slow on an 8051 in contrast to subroutine threading which is quite fast. Subroutine calls are usually 3 bytes while calls in a traditional Forth list would have been 2 bytes each. Fortunately, the VM's architecture allows easy addition and removal of functionality. Seldom-used features needn't waste valuable code memory.

The low-level debugger for the 8051 allows you to single step instructions in order to debug code words. The registers shown on the left side of the window aren't the real registers. They are a register image that is swapped out with the real registers before and after an instruction is executed. Upon entering the debugger, you need to set up SP' and R0' to use an unused part of the stack space, so that your testing doesn't step on stack data. The main program is always running, so you must be careful about stepping through code that modifies global variables. Changing the wrong thing can crash the main program.

Accessing internal RAM and SFRs can't be done from high level Forth. It's best to write your own code words for this, using KERNEL.F51 as an example. IRAM can be reached using @R1. SFR access is trickier since the SFR number is a hard-coded direct address. The debugger does generic access using self-modifying code.

Multitasking is tough on an 8051 because context switches are very clumsy. Therefore, the only multitasking support is the word PAUSE. PAUSE is invoked whenever a word is doing nothing, such as EMIT waiting for an output device to be ready. PAUSE invokes DOORPAUSE, which calls the backdoor debugger polling routine. Whatever you do with PAUSE, you should make sure it invokes DOORPAUSE. Otherwise, you'll lose the debugger. Polling routines and medium priority tasks are good candidates for PAUSE activity, since PAUSE is invoked so often.

Enter the Forthing mode by using the FI command. Now, when you type a command line, it will be processed by the tokenizer. The tokenized code will be sent to the target board and evaluated by the target board's evaluator. Click on the Virtual Console button to open the console window. Now, when you type -1 U., the string 65535 will pop up in the console window. CLS clears the window.

This mode is much like traditional Forth. The main difference is that the text source is pre-digested into its tokenized equivalent by the host, sent the target and evaluated by the target.

The files AV0.FF, AV1.FF, etc. are test files, based on the John Hayes' ANS test suite. Fload AV0.FF and observe the console window for test results. You can Fload the other AV*.FF files in sequence to verify that the kernel words are working. These tests are important to have for porting to other processors.

You can concatenate all of the AV*.FF files using the DOS copy command and tokenize and evaluate the whole thing. If you select Host Evaluation speed to be line-at-a-time, the test file will be uploaded and evaluated a line at a time. This is slow, but it’s useful if the target board hangs on a particular line.

You can extend the test suite to cover your own application words. Being able to periodically verify your work helps keep out bugs. The test suite also serves as a functional specification.
The 8051 demo board contains a serial 2-wire EEPROM for storing boot code. At startup, it attempts to evaluate boot code from each of eight possible devices on the IIC bus. See the file BOOT.FF to see some demo code. At startup, the ROM image built by DEMO51.FF evaluates the boot program stored in the EEPROM. A secondary image can be placed in the boot EEPROM by loading BOOT.FF.

DEMO51.FF builds a hyperlink index for the Winview editor. As you expand the system, you can end up with a huge number of keywords. In Winview, if you’re not sure how a word is supposed to behave, place the cursor on it and hit F9. The source code for the word will pop up. In the Firmware Studio console, you can VIEW FOO to browse the source or SEE FOO to disassemble the ROM image of the word FOO.

Interrupt Service Routines

The 8051 services interrupts by jumping to locations in ROM such as 0003, 000B, etc. At each of these addresses is a LJMP instruction pointing into the binding table. The binding table directs execution to the desired ISR.

0x0003 LJMP %INT0
interrupt vector for EXT0

0x000B LJMP %INT1
interrupt vector for T0

0x0013 LJMP %INT2
interrupt vector for EXT1

0x001B LJMP %INT3
interrupt vector for T1

0x0023 LJMP %INT4
interrupt vector for UART

0x002B LJMP %INT5
interrupt vector for T2

If you look at MAIN in END.F51, you’ll see how ISRs are linked to interrupt sources:

[CFA] b_timebase ['] %INT1 bind!

[CFA] b_timebase gets the address of the ISR code called b_timebase.

['] %INT1 bind! changes the destination of %INT1’s LJMP in the binding table.

Performance Issues

The 8051 is a slow processor by today's standards, especially when doing 16-bit operations. The evaluator is written in Forth. It takes roughly 1000 machine cycles to evaluate each token. About half of this time is used to actually evaluate the token (compile or execute it) and the rest for housekeeping and PAUSEing in the loop.

Based on experience with the test suite, large blocks of bytecode evaluate at a rate of about 2Kbytes per second on a 12 MHz 8031.

Most Forth primitives are written in assembly for speed. You can't wring much more speed from the system, although the evaluator has room for improvement.

Forth tends to be more compact than C because C spends a lot of code creating and destroying stack frames and shuffling parameters between registers and the stack. The amount of this code depends on the quality of the C compiler. Parameters are implicitly passed in Forth so all of this extra code goes away.

Types in Forth are all the same size, 16-bit or larger. On 8-bit processors, this puts Forth at a speed disadvantage with respect to typed languages like C.

Since Forth code tends to be finely factored, most of the application's time will be spent executing a relatively small number of subroutines. These can be re-coded in assembly. The end result is compact, testable code that's often faster than its C equivalent because of the lack of parameter-shuffling code.

You can extend the compiler to invoke executable code created by a C compiler. For example, you can write a filter program that extracts names and addresses from the map file left by the linker. I haven't done it yet, but it looks pretty easy. Unfortunately, each compiler vendor has different ways of passing parameters so it won't be portable.

The good news, though, is that it is very easy to call Forth words from C. Simply call into the binding table using the table’s origin (constant) minus 3*xt as the pointer value. So, TOF can be used to insulate a C application from hardware changes.

8031 Derivatives

The 8031 is the baseline processor of most 8051 families. Whatever the chip, if it can address external program memory it can probably run TOF with no modification. High speed CPUs are available from many vendors such as Dallas, Winbond, Philips and Cygnal.

Beware that some high speed chips (like Cygnal) don’t support external program memory. So far, I haven’t seen a chip with sufficient internal program RAM to run TOF. Chips with dedicated address and data ports are available, which will enable a 2-chip system.

Assembler labels for derivatives may be defined using ASMLABEL. For example, a DPTR selector at address 0x86 could be accessed with the following code:

0x86 asmlabel DPS

code foo (-- c) call FALSE mov dpl, dps ret c;

Many of the newer chips have an extra DPTR to speed up block moves. You can re-code MOVE to use it, then either paste it into the kernel or redirect all MOVEs to use the new version:

‘ MyMove is Move

if building a ROM

[‘] MyMove [‘] Move rebind
if changing at run time in a subroutine definition

‘ MyMove ‘ Move rebind

if changing at run time from the console

If you’re not cramped for space, you can include the new code in a new source file and use

‘ MyMove is Move so that the original code remains untouched.

DEMO51.FF uses Timer1 as a baud rate generator and Timer0 as a timebase. It uses the Timer1 interrupt flag for machine tracing. All other resources are free for your use. Kernel code starts at 0x0030, which is set by an ORG directive near the beginning of KERNEL.F51. You might have to change this if you want to use interrupts supplied by new on-chip peripherals. Also, append MAIN found in END.F51 to handle the new interrupt sources.

PAGE

pg 2.7

