Firmware Studio User's Manual

Appendix B. Tokenizer Glossary

TOKENIZER glossary

When in TOKENIZING mode, the TOKENIZER lexicon is in effect. These words take precedence over anything else in the search order.

Interpreter algorithm:

Search the search order for the next blank delimited string

Found?

IF
Execute it

Was this a target word?

IF
Compile a token for it

ENDIF

ELSE

Try to convert the word to a number

Converted ok?

IF
Compile the token for literal

ELSE
Error: word is unrecognized

ENDIF

ENDIF

Tokenizer Lexicon:

#ELSE

(--)

Lays a "0 #IF", resolves the previous #IF in the structure

#IF ... #ELSE ... #THEN

#ENDIF

(--)

Resolves the displacement left by #IF.

#IF

(--)

Lays token for #IF# and 2-byte forward displacement.

#THEN

(--)

Resolves the displacement left by #IF.

%%

(<name> --)

Declares a token, lays this token#.

,"

(<string"> --)

Lays the token for ," and a counted string.

.

(--)

Lays the tokens for (.) and TYPE..

."

(<string"> --)

Lays the token for ." and a counted string.

.R

(--)

Lays the tokens for (.R) and TYPE..

2CONSTANT
(<name> --)

Compiles the token for 2CONSTANT. If outside a definition, creates a new token for <name> and compiles it.

2VARIABLE

(<name> --)

Compiles the token for 2VARIABLE. If outside a definition, creates a new token for <name> and compiles it.

:

(<name> --)

Starts a new definition. Compiles the token for :. If <name> is already defined, an error message occurs.

::

(<name> --)

Redefines an existing definition. Compiles the token for : and the token for <name>.

;

(--)

Ends a definition. Compiles token for ;.

ALSO

(--)

Duplicates the top of the search order.

ARRAY

(<name> --)

Compiles the token for ARRAY. If outside a definition, creates a new token for <name> and compiles it.

BI

Enters the ROM builder mode.

BUILDING

Enters the ROM builder mode.

C"

(<string"> --)

Lays the token for C" and a counted string.

CHAR

(<char> --)

Compile token for CHAR and a byte for <char>.

CODE

(-- magic# f)

Begins a code definition using the current assembler.

Usage: code FOO YourCode c; end*code.

CODE{

(<name> --)

Begins a code definition without an assembler. Sample usage: CODE{ FOO 1 HEX[F3 DE 22] }CODE where the number immediately after FOO is the target CPU type. The target's evaluator will only compile this code if the CPU type matches.

Example: Given the following code, the tokenizer will define 3+ in machine code if the target is an 8051. Otherwise, it will use the high level definition.

: 3+ 3 + ;

code{ 3+ 1 HEX[A3 A3 A3] }CODE
CONSTANT

(<name> --)

Compiles the token for CONSTANT. If outside a definition, creates a new token for <name> and compiles it.

CREATE

(<name> --)

Compiles the token for CREATE. If outside a definition, creates a new token for <name> and compiles it.

D.

(--)

Lays the tokens for (D.) and TYPE..

DEFINITIONS

Makes the top vocabulary of the search order the current vocabulary.

END

(--)

Resolves the length and checksum of a block of bytecode inside a PROGRAM ... END structure.

END*CODE

(magic# --)

Ends a code definition, resolves the length of the code string.

FI

(--)

Enters the interactive Forth mode.

FORTHING

(--)

Enters the interactive Forth mode.

HOST

(--)

Enters the host's Forth mode.

MARKER

(<name> --)

Compiles the token for MARKER. If outside a definition, creates a new token for <name> and compiles it.

ONLY

(--)

Clears the search order so it only contains the HOME wordlist.

POSTPONE

(<name> --)

Compile the token for POSTPONE and the token for <name>.

PREVIOUS

(--)

Drops the top vocabulary in the search order.

PROGRAM

(<name> --)

Creates a token for <name>. Marks the beginning of a tokenized program with a 7-byte header. See END.

S"

(<string"> --)

Lays the token for S" and a counted string.

STRING

(<name> --)

Compiles the token for STRING. If outside a definition, creates a new token for <name> and compiles it.

TE

(--)

Enters testing mode. For interactive testing of target words.

TESTING

(--)

Enters testing mode. For interactive testing of target words.

TI

(--)

Enters tokenizing mode.

TOKENIZING
(--)

Enters tokenizing mode.

U.

(--)

Lays the tokens for (U.) and TYPE..

U.R.

(--)

Lays the tokens for (U.R) and TYPE..

UD.

(--)

Lays the tokens for (UD.) and TYPE..

VALUE

(<name> --)

Compiles the token for VALUE. If outside a definition, creates a new token for <name> and compiles it.

VARIABLE

(<name> --)

Compiles the token for VARIABLE. If outside a definition, creates a new token for <name> and compiles it.

VOCABULARY
(<name> --)

Creates a word that replaces the top of the search order with its own vocabulary.

WORDS

(--)

Displays all words in the vocabulary at the top of the search order.

[']

(<name> --)

Compile a literal for the xt of <name>.

[CHAR]

(<char> --)

Compile a literal for <char>.

[COMPILE]

(<name> --)

Compile the token for [COMPILE] and the token for <name>.

}CODE

(magic# --)

Terminates an embedded machine code definition. See CODE{.

PAGE
pg B.5

