Firmware Studio User's Manual

03/08/01
Firmware Studio User's Manual

Atmel's AVR processors

AVR development - Getting Started

The AVR family of microcontrollers is Forth-friendly, having been designed with another popular stack-based language in mind: 'C'. The typical AVR doesn't have SRAM-based program memory, so it won't support TOF. However, Firmware Studio serves as a good development tool for AVR code whether it be Forth or assembly.

You can compile code with Firmware Studio and download it using Atmel's AVRisp utility. Then, you may interactively test code from Firmware Studio's console. If you need to, AVRstudio (free from Atmel) lets you simulate execution of a hex file. You currently can’t download code from Firmware Studio, but switching between windows isn’t a hassle.

To get started right away, you'll need Atmel's STK200 or STK300 starter kit. The STK200 comes with an AT90S8515. It's available for about $50 from any Atmel distributor. Digi-Key has them for $49, part# ATSTK200-ND. Atmel sales reps have been known to give these away, since they're such great promotional items and the cost of making the sales call swamps the cost of the STK anyway.

You'll also need a straight-through 9-pin serial cable. This is sometimes called a Monitor Extension Cable, but make sure it's not the 15-pin VGA type. If you build your own cable using male and female DE-9 connectors, you only need to wire pins 2, 3 and 5.

Plug a wall-wart power supply into the STK board, connect the serial port to your PC using the serial cable, and plug the STK's dongle into the PC's parallel port and the STK's programming header. Install Atmel's tools, especially AVRISP. If you're running Windows NT, you may need to get a special version of AVRISP from Atmel.

For the STK200, start Firmware Studio and enter FLOAD DEMOAVR.FF. This will compile the demo program and save a hex file DA.HEX. Then, launch Atmel's AVRISP utility. Pick Project New from the menu, then select the AT90S8515 from the device list and fill in the name and comment information. There will be several windows on the screen. Click on the "Program Memory" window to make the rest of the menus active. Pick File Load to load the file DA.HEX. Do a Project Save. Now, hit F5 to download the code to the board. Switch back to Firmware Studio but don't close AVRISP.

Whenever you recompile, you can switch to AVRISP and hit F5 to reload the hex file and program the AVR part.

Click on the Target button. Firmware Studio will look for the board on all serial ports, then connect to it. Once this happens, you can type numbers and words at the console and have them execute on the target board. Try the following:

1 2 3 +

On the left side of the screen, you'll see the stack data resident on the target board.

The word '+' takes two 16-bit numbers from the data stack, adds them, and pushes the result back onto the stack. The top of the data stack is the 16-bit X register. To see the disassembled code, type SEE +.

00078 9009 +: LD R0,Y

0007A 9009 LD R0,Y+

0007C 0DA0 ADD R26,R0

0007E 1DB1 ADC R27,R1

00080 9508 RET

BUG MYWORD invokes a high level debugger, which opens the source file containing MYWORD and lets you step through the code. You can switch back and forth between the debug window and the console by clicking the mouse, but be careful where you click in the debugger since click is used to reposition the "instruction pointer".

AVR Register Usage

Forth uses the registers listed in the following table. The other registers are available for your application. You are free to use the scratchpad registers, but be aware that they may be changed by calls to Forth subroutines.

	Reg
	Aliases
	Usage
	Reg
	Aliases
	Usage

	R0
	WL, W
	scratchpad
	R16
	
	scratchpad

	R1
	WH
	scratchpad
	R17
	
	scratchpad

	R2
	UL, U
	User pointer
	R18
	
	scratchpad

	R3
	UH
	for multitasking
	R19
	
	scratchpad

	R4
	
	
	R20
	
	

	R5
	
	
	R21
	
	

	R6
	
	
	R22
	
	

	R7
	
	
	R23
	
	

	R8
	
	
	R24
	AL, A
	'A' pointer

	R9
	
	
	R25
	AH
	

	R10
	
	
	R26
	XL,X,TOSL
	Top of data stack

	R11
	
	
	R27
	XH,TOSH
	

	R12
	
	
	R28
	YL, Y
	Data stack pointer

	R13
	
	
	R29
	YH
	

	R14
	
	
	R30
	ZL, Z
	scratchpad

	R15
	
	
	R31
	ZH
	scratchpad

Using the assembler
The assembler uses Atmel's instruction syntax. An instruction consists of an instruction name and an operand list. The operand list mustn't contain spaces. You can put multiple instructions on the same line. Subroutines start with CODE and end with C; or END-CODE. Browse KERNEL.FAR for lots of examples.

Inline assembly can be placed in CODE definitions by enclosing it within C[and]C.

R20 to R23 are free for your use, and they make good state machine pointers. Consider the following example of a simple state machine. The VECTOR macro compiles two LDI instructions to load register pair R21:R20. Each call to DOSTATE changes state. The code is efficient enough for use in interrupt-driven state machines.

code state3
ldi R16,1 out PortB,R16

vector{ reti c;

code state2
ldi R16,2 out PortB,R16

vector R20,state3 reti c;

code state1
ldi R16,4 out PortB,R16

vector R20,state2 reti c;

}vector R20,state1

code dostate
mov ZL,R20 mov ZH,R21 ijmp c;

The code in the demo file MAVR.FF contains a state machine that handles half-duplex RS485 communication. A packet-based link protocol complete with error checking and CRC generation is handled in the background by an ISR.

You can run it on the STK200 board (with AT90S8515) by FLOADing MAVR.FF and programming the board with the hex file. Use a straight-through serial cable to connect the board to the host PC’s COM1. Firmware Studio supports the new mode of communication with the Target Multidrop menu command. With minor modification, you can hook up RS485 converters and operate multiple target boards over a twisted-pair. For more details, see Appendix E.

The CYCLE_DELAY macro lays down code to produce exact time delays of 0 to 770 cycles. For example, 49 CYCLE_DELAY compiles code to waste 49 clock cycles. R16 is cleared.

The LDI_R16[macro compiles an LDI R16,N instruction using a list of bit positions. It's useful for defining initialization code for ports. A list of bit labels is delimited by a bracket. For example, if RXEN is 4 and TXEN is 3, LDI_R16[RXEN TXEN] sets bits 4 and 3 to form LDI R16,0x18.

The LDIW macro compiles two LDI instructions to load a register pair with a 16-bit constant.

The LDIP is like LDIW but divides the constant by 2 to serve as a program address.

JSR compiles an RCALL if possible, otherwise it compiles CALL. Note that some AVRs don’t support CALL. The ICALL instruction may be needed in that case, so you might have to fix JSR to compile the necessary code.

GOTO is the RJMP / JMP equivalent of JSR.

An immediate operand can an assembly-label, number, local label, code-address, or ASCII character in that order. For example, if you define a Forth word called ‘0’, rcall 0 calls address 0x0000 because it found ‘0’ as a number before it found it in the code address list. When in doubt, try it and SEE the result. Local labels are @@0 thru @@9 (see below). ASCII characters are characters between two tick marks. For example, LDI R16,’A’.

Branches are compiled using control structures. You can extend the compiler BLDAVR.G to support local labels, but I've found control structures sufficient for defining any kind of branching I need to do. They are also more readable.

FOR … NEXT Rn compiles code to do something 1 to 256 times. The NEXT lays down code to decrement Rn and branch back if not zero.

IF_Z <code…> THEN compiles a BRNE past the <code> instructions. So, the code only executes if the Z flag is set. IF_NZ, IF_C, IF_NC, etc. are similar.

IF_Z <code1…> ELSE <code2…> THEN is similar. If the Z flag is set, <code1> executes. Otherwise, <code2> executes.

NEVER is a version of IF that branches around code. NEVER THEN and NEVER ELSE THEN are useful when they are preceded by a conditional skip instruction.

BEGIN <code…> AGAIN compiles a forever loop. A skip is useful before the AGAIN.

BEGIN <code…> UNTIL_Z compiles a loop ending in a BRNE instruction. UNTIL_NZ, UNTIL_C, UNTIL_NC, etc. are similar.

BEGIN <code1…> WHILE_Z <code2…> REPEAT is good for doing something zero or more times. WHILE_Z compiles a BRNE past <code2> and REPEAT compiles a branch to the beginning of <code1>.

NOWAY is a version of WHILE that compiles an unconditional jump. Put a skip in front of it.

CONTINUE can be placed between WHILE and REPEAT to branch back to BEGIN.

MULTI Rn <code…> REPEAT is good for doing something zero or more times. Similar to a FOR loop but used to do something 0 to 128 times. MULTI lays down DEC Rn and BRPL.

REGISTER: defines a new register name. For example, 23 register: flags creates an alias for R23 called flags.

JUMP[R16 label1 label2 … labelN]JUMP compiles code for a jump table that uses R16 as the index. Any register may be used. This must be a one-liner.

CASE R16 # OF … ENDOF

ENDCASE compiles a CASE structure consisting of CPI R16,# instructions and branches. Registers are restricted to R16 to R31.

Example of case usage:

case R16 10 of rcall ten endof

 11 of rcall eleven endof

 12 of rjmp twelve |endof

 rcall otherwise

endcase

Local assembly labels @@0 thru @@9 are available for compile-time calculations by the Forth interpreter. For example, {{ asmlabel? PortA 1+ >@@0 }} sets the value of local label @@0. The following example uses this label: ldi R16,@@0
Words between brackets {{, }} are assumed to be in the home vocabulary and not target words. Since this is a cross compiler, target words don’t execute. There are some exceptions, such as words that behave like literals are simulated.

The LPM and SPM instructions need a parameter list, even though they may be implicit. Just use a | character in this case. Example: LPM | .

>CS and CS> push and pop branch parameters. IF_Z … >CS … IF_C … CS> THEN … THEN compiles the following:

BRNE L0

…

BRCC L1

…

L0
…

L1
…

Browse BLDAVR.G to see the assembler and builder source. You can add you own directives and see how the existing ones work.

Using Forth
The builder compiles subroutine threaded code. Words that are very short are simply inlined. Some words preceded by literals are optimized. +, -, AND, OR, @, C@, ! and C! are optimized when used in conjunction with literals. Note that variables and constants are considered literals. For example, the definition : HEX 16 base ! ; compiles to something like:

00578 E000 HEX: LDI R16,0

0057A 93000101 STS 101,R16

0057E E00A LDI R16,10

00580 93000100 STS 100,R16

00584 9508 RET

There’s a flag in BLDAVR.G that enables speed optimization. Literals are inlined for speed. They require 4 instructions and execute in 6 cycles. With optimization turned off, literals are encoded using 2 or 3 instructions depending on the value.

Cooperative multitasking relies on the use of PAUSE. PAUSE takes a lap around the task queue, so you should PAUSE whenever you’re waiting for I/O. Context switching is fairly quick. With an 8 MHz xtal, PAUSE takes about 4us to do a context switch and 1.5us to skip over each sleeping task -- not bad for an 8-bit micro. The AVR demo demonstrates multitasking.

Every task must have a PAUSE or a word that calls PAUSE in it, or it will hang the system. When tasks are I/O bound, cooperative multitasking provides a very efficient way to use CPU time. A sleeping task takes very little CPU time, so you should SLEEP a task when it’s doing nothing. Ideally you’d use an ISR to wake a task when it needs to do something. Use an ISR to do the time-critical part of a task, then wake up a task to finish the job and do clean up.

IFCLR and IFSET are special versions of IF. They compile efficient bit tests using the SBRS and SBRC instructions.

Sample Usage: [3] IFCLR SWAP THEN is the same as DUP 8 AND 0= IF SWAP THEN.

A compact CASE-like structure is similar. The restrictions are: Only the low byte of c is used and each case must be short enough to be covered by a short branch. Also, there is nothing following the QCASE structure.]? compiles an exit.

For example:

: test (c --)

 qcase: [1] ?[sqrt]?

 [3] ?[dist]?

 [5] ?[dup over rot]?

 ;

This is equivalent to the ANS Forth CASE structure:
: test (c --)

 case 1 of sqrt endof

 3 of dist endof

 5 of dup over rot endof

 ;

DEMOAVR.FF builds a hyperlink index for the Winview editor. As you expand the system, you can end up with a huge number of keywords. In Winview, if you’re not sure how a word is supposed to behave, place the cursor on it and hit F9. The source code for the word will pop up. In the Firmware Studio console, you can VIEW FOO to browse the source or SEE FOO to disassemble the ROM image of the word FOO.

Your own hardware

You can use the file DEMOAVR.FF as a starting point for your code. The demo code includes the debugger and Forth words. It uses Timer0 for a timebase interrupt, which can be stripped out if you need that timer. The token browser has a usage field that tells how many times a word is referenced. If you need to strip out code to make your application fit in flash, use this tool to see where the dead code is. You don’t want to omit all dead code, since some of it is useful for testing. For small devices, you might want to develop code using a part with more ROM space and then remove the debugger to fit it in the final design. Notice that you can easily use conditional compilation to include debugging tools or not.

Code in BEGIN.FAR selects the timer reload value needed to use the highest possible autobaud frequency. It picks the lowest baud rate divisor that will give a baud rate error of less than 2%. The target board's UART must run at 2.4, 4.8, 14.4, 19.2, 38.4, 57.6 or 115.2 kBPS. An arbitrary crystal frequency may be used but you’ll probably end up with a low baud rate.

Connect the UART pins to the host's serial port (any port from Com1 to Com4) through the RS232 transceiver chip. Note that most PCs will accept a 0 to 5V swing as valid RS232 input, so for demonstration you could use a 74HC04 as the transceiver chip (100k in series with PC’s TXD line).

Firmware Studio’s “reset” command resets the target board by dropping the DTR line (pin 4 of the PC’s DE9 connector) for ½ second. This is a very useful feature to have in a debugging environment. Provide for this in your hardware if possible.

PAGE

pg 4.7

