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Appendix B.  Tokenizer Glossary


TOKENIZER glossary

When in TOKENIZING mode, the TOKENIZER lexicon is in effect.  These words take precedence over anything else in the search order.

Interpreter algorithm:


Search the search order for the next blank delimited string


Found?


IF
Execute it



Was this a target word?



IF
Compile a token for it



ENDIF


ELSE



Try to convert the word to a number



Converted ok?



IF
Compile the token for literal



ELSE
Error: word is unrecognized



ENDIF


ENDIF

Tokenizer Lexicon:

#ELSE

( -- )




Lays a "0 #IF", resolves the previous #IF in the structure




#IF ... #ELSE ... #THEN

#ENDIF

( -- )




Resolves the displacement left by #IF.

#IF


( -- )




Lays token for #IF# and 2-byte forward displacement.

#THEN

( -- )




Resolves the displacement left by #IF.

%%


( <name> -- )




Declares a token, lays this token#.

,"


( <string"> -- )




Lays the token for ," and a counted string.

.


( -- )




Lays the tokens for (.) and TYPE..

."


( <string"> -- )




Lays the token for ." and a counted string.

.R


( -- )




Lays the tokens for (.R) and TYPE..

2CONSTANT   
( <name> -- )

Compiles the token for 2CONSTANT.  If outside a definition, creates a new token for <name> and compiles it.

2VARIABLE

( <name> -- )

Compiles the token for 2VARIABLE.  If outside a definition, creates a new token for <name> and compiles it.

:


( <name> -- )

Starts a new definition.  Compiles the token for :.  If <name> is already defined, an error message occurs.

::


( <name> -- )

Redefines an existing definition.  Compiles the token for : and the token for <name>.

;


( -- )




Ends a definition.  Compiles token for ;.

ALSO     

( -- )




Duplicates the top of the search order.

ARRAY

( <name> -- )

Compiles the token for ARRAY.  If outside a definition, creates a new token for <name> and compiles it.

BI


---


---


---




Enters the ROM builder mode.

BUILDING

---


---


---




Enters the ROM builder mode.

C"


( <string"> -- )




Lays the token for C" and a counted string.

CHAR


( <char> -- )




Compile token for CHAR and a byte for <char>.

CODE


( -- magic# f )




Begins a code definition using the current assembler.

Usage:  code FOO YourCode c; end*code.

CODE{

( <name> -- )

Begins a code definition without an assembler.  Sample usage: CODE{ FOO 1 HEX[ F3 DE 22 ] }CODE where the number immediately after FOO is the target CPU type.  The target's evaluator will only compile this code if the CPU type matches.

Example: Given the following code, the tokenizer will define 3+ in machine code if the target is an 8051.  Otherwise, it will use the high level definition.

: 3+  3 + ;

code{ 3+ 1 HEX[ A3 A3 A3 ] }CODE
CONSTANT

( <name> -- )

Compiles the token for CONSTANT.  If outside a definition, creates a new token for <name> and compiles it.

CREATE

( <name> -- )

Compiles the token for CREATE.  If outside a definition, creates a new token for <name> and compiles it.

D.


( -- )




Lays the tokens for (D.) and TYPE..

DEFINITIONS
---


---


---

Makes the top vocabulary of the search order the current vocabulary.

END


( -- )

Resolves the length and checksum of a block of bytecode inside a PROGRAM ... END structure.

END*CODE

( magic# -- )

Ends a code definition, resolves the length of the code string.

FI


( -- )




Enters the interactive Forth mode.

FORTHING

( -- )




Enters the interactive Forth mode.

HOST


( -- )




Enters the host's Forth mode.

MARKER

( <name> -- )

Compiles the token for MARKER.  If outside a definition, creates a new token for <name> and compiles it.

ONLY


( -- )

Clears the search order so it only contains the HOME wordlist.

POSTPONE

( <name> -- )

Compile the token for POSTPONE and the token for <name>.

PREVIOUS

( -- )




Drops the top vocabulary in the search order.

PROGRAM

( <name> -- )

Creates a token for <name>.  Marks the beginning of a tokenized program with a 7-byte header.  See END.

S"


( <string"> -- )




Lays the token for S" and a counted string.

STRING  

( <name> -- )

Compiles the token for STRING.  If outside a definition, creates a new token for <name> and compiles it.

TE


( -- )




Enters testing mode.  For interactive testing of target words.

TESTING

( -- )




Enters testing mode.  For interactive testing of target words.

TI


( -- )




Enters tokenizing mode.

TOKENIZING
( -- )




Enters tokenizing mode.

U.


( -- )




Lays the tokens for (U.) and TYPE..

U.R.


( -- )




Lays the tokens for (U.R) and TYPE..

UD.


( -- )




Lays the tokens for (UD.) and TYPE..

VALUE

( <name> -- )

Compiles the token for VALUE.  If outside a definition, creates a new token for <name> and compiles it.

VARIABLE

( <name> -- )

Compiles the token for VARIABLE.  If outside a definition, creates a new token for <name> and compiles it.

VOCABULARY
( <name> -- )

Creates a word that replaces the top of the search order with its own vocabulary.

WORDS

( -- )

Displays all words in the vocabulary at the top of the search order.

[']


( <name> -- )




Compile a literal for the xt of <name>.

[CHAR]

( <char> -- )




Compile a literal for <char>.

[COMPILE]

( <name> -- )




Compile the token for [COMPILE] and the token for <name>.

}CODE

( magic# -- )

Terminates an embedded machine code definition.  See CODE{. 
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