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Introduction


Welcome to Firmware Studio

Firmware Studio is a firmware development system for microcontrollers. A Windows95/NT based program provides the user interface and development environment, while firmware on the target device provides a processor-independent virtual machine. A serial cable or other communication link provides transparent access to the target device for testing.

Firmware Studio and Tiny Open Firmware, or TOF are based on the ANS Forth programming language.  But isn’t Forth a dead language that came and went back in the ‘80s?  Not quite. Forth may have declined in use since then, but the Forths of today are far better that those available even a decade ago.  Forth has been steadily pushed into the embedded realm, where it squeezes the most functionality out of resource constrained systems.

Forth is a programming tool that masquerades as a language, not the other way around as is the case with C, C++ and Java.  This distinction lets us mold our tools (and language) to our intended application, not force-fit our application to the constraints of a particular language.  Without these shackles, the magic begins.

This system was inspired by the IEEE1275 standard for boot firmware, commonly known as Open Firmware (OFW).  TOF is basically the Forth part of OFW pared down to suit small embedded systems.  The object oriented device tree part of OFW is absent, replaced by a much simpler pool of methods.  Some encapsulation is possible, but that's up to you.  

TOF provides many of the benefits of IEEE1275 Open Firmware (OFW), but is geared toward small embedded processors rather than desktop machines. Its emphasis is on flexibility and ease of debugging.  Whereas a 32-bit system is recommended for supporting OFW, Firmware Studio easily fits in 8-bit systems.  The ROM footprint is typically 10 to 16 Kbytes.

The ability to patch ROM code is a natural byproduct of Open Firmware’s implementation.  This feature is especially useful in the kinds of applications suited for Firmware Studio.  Almost any kind of bug can be patched, taking most of the risk out of committing code to masked ROM. 

A very efficient threading scheme adds an extra level of indirection (through a table in RAM) to allow patches to the ROM code. This "binding table" usually consists of jump instructions. Subroutine calls jump into the binding table, which then jumps to the code to be executed. 

At startup, the binding table is initialized from ROM. After that, a program called an evaluator loads tokenized source code from a storage device (such as a serial EEPROM) to link patches and added features into the system. Essentially, new code is spliced into the system at boot time. The basic firmware, bugs and all, is always in ROM. The ROM never changes. No parts are scrapped. A small amount of Flash memory or EEPROM holds just the fixes and add-ons.

The RAM-based binding scheme is the keystone of Open Firmware. The evaluator compiles tokens (numeric equivalents of keywords) into machine code in one pass. Compilation is simple and straightforward, giving high throughput. During evaluation, tokens may execute or be compiled as they are encountered.

Compilation throughput in thousands of tokens per second is roughly 1 on an 8031, 50 on a classic 68000, and 100 to 1000 on a Coldfire. This JIT compilation mechanism allows functionality to be archived as compact bytecode and compiled into RAM as needed.

Having an efficient on-board compiler offers new possibilities for product differentiation.  Embedded plug-and-play capability and end-user programmability can be exploited to gain an edge in the marketplace and to extend the useful life of products.

The ability to alter the run-time system at any time is a powerful debugging feature. Code on the target device can be tested and modified during live operation. The effects of code changes can be seen immediately. There is no need to stop the system, load the changed code, restart the system and bring the system to the point at which the new code is supposed to have an effect.

Like OFW, Firmware Studio provides a clean, simple solution for plug-and-play add-on peripherals. Add-on hardware may contain boot code that links the new hardware into the system. Hardware that is built to augment a specific application can have firmware with knowledge of that application so that it modifies the application to add the desired functionality. All this can be done with almost no forethought of what possible add-ons may appear in the product’s life cycle.

OFW was designed to be processor independent and to facilitate arbitrary hardware add-ons in the field. Firmware Studio can be processor independent, but the add-ons it supports will generally be application dependent and supplied by the OEM. Since the OEM will have intimate knowledge of the system, Firmware Studio lets you modify things like interrupt vectors and allows machine code to be embedded in the tokenized boot code.

Firmware Studio is based on ANS Forth.  Win32forth, a freeware WindowsNT Forth system, compiles the source, which is also free. Firmware Studio combines the productivity advantages of Forth with highly interactive debugging tools.

Firmware Studio presently supports the AVR, 8051 and 68K/Coldfire families of processors. The 8051 and 68K/Coldfire versions have passed the validation suite.  All have many subroutines written in assembly for speed. 

As of Q2 2000, Firmware Studio runs on Coldfire (MCF5307), 68332 and 8051 evaluation boards.  The development tools and debugger (but not TOF) also run on Atmel’s STK200 and STK300 (AT90S8515 and ATmega103) evaluation boards. 

Porting to a new processor takes some work, but the effort isn’t unreasonable since the source for the assemblers, disassemblers and builders of other processors is present.  Besides, nothing brings you up to speed on a new processor architecture like porting it to Firmware Studio.

Why Firmware Studio? 



Microprocessors are small electronic circuits that control many facets of everyday life. Automobiles use them for engine, drive train and climate control. Microwave ovens use them to control cooking. Airplanes use them for navigation and flight control. NASA sends them into space. In today’s marketplace, almost everything that uses electricity has a microprocessor in it.

Microprocessors operate from a stored set of instructions called the operating program. Changing this program changes the behavior of the system. This versatility is what makes them so popular. A microprocessor produced by a given manufacturer can be designed into a wide array of products. An embedded microprocessor is one that performs a dedicated function in a product rather than performing general purpose computing: in other words, a computer that doesn’t look like a computer.

The operating program that controls a microprocessor is known as firmware. A programmer creates firmware by writing a human-readable program (source code) and converting it to machine-readable form (object code) using a compiler. In what is known as the "edit-compile-test-debug cycle", the programmer modifies the program, compiles it, tests it, devises solutions to problems that were found and makes more modifications. When the program has all of the desired features and passes every test the manufacturer can think of, it is considered finished.

The firmware of a microprocessor contains a set of features designed to address the customers’ needs. If a customer is using the product in an application that wasn’t foreseen by the manufacturer and has unique needs, the customer must either live without the desired features or get the manufacturer to spend valuable engineering resources on firmware maintenance.

In embedded microprocessor designs, every penny counts. The lowest cost memory for firmware storage is masked ROM (Read Only Memory). Because of high setup costs, firmware changes in a masked ROM part are very expensive. Although firmware is tested thoroughly before being committed to masked ROM, today’s increasingly complex firmware still presents an element of risk. Other memory technologies can be reprogrammed, but they are more expensive. In-circuit programmability offers even more flexibility, but at the cost of extra support circuitry.

Firmware Studio is a Windows95/NT-based development environment designed to improve the firmware development cycle, provide a means for end-user programmability, and allow firmware fixes and upgrades even to masked ROM.

The main problem with the usual edit-compile-test-debug cycle is that the system must be stopped whenever a change is made. After the change is made, the system must be restarted and brought to the point at which the change is supposed to have an effect. Firmware Studio allows live debugging that is analogous to "hot-swapping" of hardware modules. Just as troubleshooting a car engine is often easier while the engine is running, debugging live firmware quickly reveals the effects of firmware changes.

There is also a provision for single stepping through code to observe its operation. The code under test has its own execution thread, allowing the target system to run at full speed while testing is underway.

Firmware Studio features diagnostic tools for monitoring a live system, making it easy to see what the firmware is doing. A small monitoring program that coexists with the rest of the firmware provides a data link to a host PC running Firmware Studio.

The compiler used by Firmware Studio allows incremental compilation, which means that only a small part of the program needs to be compiled for each test. When used in conjunction with the debugging tools, this reduces compile time and greatly compresses the development cycle. 

The code that runs on the microprocessor is loosely based on IEEE1275 Open Firmware (OFW). While OFW was designed primarily for plug-and-play compatibility of workstation add-on cards, Tiny Open Firmware (TOF) was mainly designed for easy maintenance of firmware in embedded systems.

TOF allows the manufacturer to build an application language that the end user, as well as the manufacturer, can use to add more functionality. The internal workings of the application language, which may be proprietary, needn’t be revealed to the end user. 

Using Firmware Studio, the end user (or the customer's MIS department) can tailor the firmware to his or her own needs. So, the manufacturer needn’t spend engineering resources on the endless code maintenance caused by requests for special features. Code maintenance becomes more the customer's responsibility, letting the OEM off the hook.

TOF allows sections of code to be replaced anytime, even though they are in ROM. Upon power-up, these modifications are loaded and compiled from a small memory device and linked into the system. The manufacturer or the end user can place code for additional features in this memory. New functionality can be loaded anytime, from any source, quickly and transparently. This flexibility comes at the expense of a very small reduction in performance and a relatively small amount of extra RAM (Random Access Memory).

Firmware Studio contains a tokenizer that converts source code to tokenized form. The tokenizer is a kind of pre-processor that strips out comments and converts text instructions and data into a compact numeric representation. The tokenized code is portable among processors that implement the same virtual machine.

When tokenized code is loaded, it is translated into machine code and stored in RAM. This code may be removed from RAM at will and replaced by code for other features. Since tokenized code is very compact, many features can be packed into a small memory device. A good analogy is a PC with a compressed hard disk. Programs are loaded and removed from RAM at will, and their stored format is much smaller than the equivalent executable code. The difference is that PC programs are pre-compiled so they are processor dependent.

TOF needs program RAM for its dynamic linking mechanism and space for added features. Depending on the processor and how big the application is, 2K to 4K bytes is about the minimum useful amount of additional program RAM. Most of today's microcontrollers have very limited built-in RAM. For systems that would otherwise get by without an external RAM or a larger external RAM, Firmware Studio represents an additional expense. However, the complex and change-prone systems that Firmware Studio was made for are likely to have sufficient extra resources. As feature sizes shrink, the extra on-chip RAM will become less of an issue.

The proliferation of systems-on-a chip and the emergence of embedded DRAM in the late 1990's produce favorable conditions for Firmware Studio. As systems become ever more integrated and customized (more features packed into fewer components), the need for changeable firmware will grow. On-chip Flash memory is currently the most popular means of providing this flexibility, but it is expensive. Even so, the strong market demand for these devices illustrates the need for flexible firmware. By including some extra program RAM on-chip, Firmware Studio would allow the use of conventional masked ROM and provide powerful debugging and enhancement features.

In many cases, Firmware Studio provides the lowest cost means of in-system programmability.

Firmware Studio is all about flexibility. It allows rapid and efficient development of firmware, enables end users to make their own customizations, and allows field firmware upgrades without ROM changes. 

 

What chips are Firmware Studio well suited for? 



Firmware Studio is a good development environment for almost any chip.  For example, I write all assembly for small AVR projects.  The debugging tools are very useful even if little code is written in Forth.  The tools currently support 8051, CF/68K and AVR families.  It can be ported to others.

Many of today’s microcontrollers are designed to run ‘C’ code efficiently.  Since ‘C’ means stacks and 16-bit (or wider) arithmetic, they also run Forth efficiently.  Self-modifying code is generally frowned upon and ‘C’ isn’t extensible so most micros have very little, if any, program RAM.

Tiny Open Firmware needs a small amount of program RAM, typically 4 to 8 Kbytes. In a microprocessor-based system, this RAM requirement usually isn't a problem. For single-chip designs based on off-the-shelf microcontrollers, the amount of on-chip program RAM is often too little to be practical. This is changing. For example, many modern DSP chips have lots of on-chip RAM. An extra benefit of Firmware Studio here is that the compactness of the whole application can alleviate the need for off-chip memory. 

Motorola's standard-product M-core chip, the MMC2001, has 32 Kbytes of RAM on-chip, providing a comfortable fit. Mitsubishi makes the MR32 (which has 2M of embedded DRAM) and the M16C. An Atmel AVR 8-bit RISC would work if it had program RAM.  Atmel’s FPSLIC is an FPGA/AVR combo that does have RAM-based program memory which would support TOF.  Triscend makes an 8052 derivative with sufficient SRAM.

Mitsubishi’s M16C 16-bit processor is the best low cost choice for single-chip operation.  In addition to having sufficient SRAM, it has a JSRI instruction that can take its jump address from the binding table.  TOF can span much more that 64K of program space using 16-bit cells, since XTs aren’t CFAs.  Too bad there’s no M16C port yet.  

Firmware Studio can be made to provide powerful debugging tools for any system. On many systems, it reduces the cost of components by drastically cutting the size of the upgradeable boot device. If it makes you add an extra RAM chip then the savings could evaporate, but a large system will usually be able to spare the RAM.

Rev 2.1x of Firmware Studio supports the AVR, 8051 and 68K/Coldfire families. The AVR version does Forth, but not TOF.  For other chips, you'll have to do some work.  Porting to a new processor takes some doing.  Usually I write a disassembler and an assembler, then I write the debugger and a bunch of kernel words in assembly.  Most target chips have a cheap or free simulator, and that helps get the debugger code working.  Then, I get target hardware up and running with the debugger and use the debugger to test each kernel word.  Finally, I run a test suite through the evaluator.

How does Tiny Open Firmware (TOF) work? 



The firmware created by Firmware Studio is based on subroutines. Subroutines are small sections of code that perform a particular function. Each subroutine is essentially an extension of the microprocessor's language. As new subroutines are added, more functionality becomes available. Working at a higher level of abstraction, more can be done with less code. In a carefully designed system, functionality grows exponentially with code size. An application language is a group of subroutines designed to address a particular class of problems.

The firmware resident in the target system is similar to IEEE1275 Open Firmware but is geared more toward embedded applications than desktop computers. I call it Tiny Open Firmware, or TOF. TOF is the component of Firmware Studio that resides in a ROM on the target processor. It presents a processor independent virtual machine to the PC-based host.

TOF uses a group of subroutines collectively known as Forth. Forth is particularly well suited to TOF, being heavily subroutine based and inherently reentrant. This time-proven language uses an efficient set of subroutines that pass parameters via a dedicated data stack. To a software designer, Forth is a stack-based language without types. To a hardware designer, Forth is a large collection of small subroutines managed by a simple interpreter. In Forth, subroutines are called words.

When managed by the interpreter, this collection of words constitutes both a run-time virtual machine and a compiler. There is no wall between the compiler and the rest of the language. Extending the language (by defining new words) can extend the compiler. 

The flexibility of TOF revolves around a special lookup table in RAM. All references to any given word go through this table, which is basically an array of pointers. This table is referred to here as the binding table. The binding table is formed from jump instructions so as to add very little run-time overhead. When a subroutine call is compiled, the destination is somewhere in the binding table. Since most of the subroutines are resident in ROM, these pointers initially point to code in ROM. If one of the subroutines needs to be changed, the replacement code may be placed in RAM and the corresponding element in the binding table modified to point to the new code.

TOF compiles tokenized source code in a manner similar to the IEEE1275 Open Firmware used in most of today's workstation firmware. A boot device or other source contains processor-independent, tokenized source code. An evaluator fetches tokens from a boot device or other input source. For each token, the evaluator either executes the word associated with the token or compiles a call to that word. 

The code for each word is preceded by a header byte containing various flags. The evaluator uses the immediate flag in the word's header byte and a Boolean variable called state to determine whether to compile or execute a token. If state is true, the evaluator is in compile mode and incoming tokens will be compiled unless their immediate flag is set. If state is false, tokens are executed.

For each token, the evaluator needs to extract various pieces of information. A token is simply a number, unique to one word and represented by one to three bytes. The most commonly used words are represented with a single byte. When the evaluator fetches this number, it uses it to compute an address in the binding table. If the token is to be compiled, the evaluator compiles a subroutine call to this address. If the token is to be executed, the evaluator calls this address. In order to get header information (such as the immediate flag), the evaluator gets the word's execution address from the binding table. Since the header byte is immediately before the word, subtracting one yields the address of the header byte.

When a token is compiled, the code is usually a call into the binding table. Sometimes the word performs a trivial action that is economical to do with in-line machine code. In this case the evaluator compiles this inline code instead of a subroutine call. If the token number being compiled is the same as the token number of the current definition, a recursive situation arises which may not be desirable. When this happens, the evaluator bypasses the binding table by fetching the destination address from the binding table and compiling a call directly to this address. 

Immediate words usually perform some compilation action. For example, IF and THEN are immediate words that compile a control structure. Examples of immediate actions include pushing a number onto the stack, ending compilation, compiling strings and literals, etc.

TOF uses a small non-volatile memory such as serial EEPROM on the target board to hold tokenized boot code. Upon startup, the firmware initializes itself and tries to load boot code from this device. If there is a hardware error or the checksum of the code is wrong, the code isn't loaded. If broken code is somehow placed in the boot device such that the system crashes upon startup, there must be a provision for inhibiting the loader so that a normal startup occurs. This could be as simple as grounding the data line of the serial EEPROM to force a hardware error.

Tokenized code may be loaded from any device. For example, devices on a multidrop serial bus or Ethernet link could be loaded with new code anytime from the bus master.

Since the evaluator operates in a relatively simple and straightforward manner, it has very high throughput. Compilation occurs very quickly, allowing new code to be loaded on an as-needed basis. Many features can be packed into a memory device in tokenized form. When one of these features is needed it can be loaded into RAM, executed and removed without any significant delay from the loading process.

Tokenized code is converted to fast-executing native code. Compared to its equivalent executable code, the tokenized code is quite compact. For example, the 8051 code shown below is 2.6 times as big as its tokenized source. Most 16-bit and 32-bit processors use longer instructions than the 8051, so the resulting code for these processors would use even more memory.

The evaluator evaluates token numbers between 1 and 8191.  The most-used tokens are 1-byte values between 32 and 255.  Values between 1 and 31 cause a second byte to be fetched and combined with the first to form a number between 256 and 8191.  If the first byte is zero, two bytes are fetched to form all remaining 16-bit values.

Token values between 4096 and 8191 are treated as relative tokens.  At the beginning of each evaluation, a variable called tokenbase is set to point to the lowest undefined binding table entry. When a relative token is processed, 4096 is subtracted and tokenbase is added so that the token gets mapped onto a free area of the table.  The highest absolute token value is tracked in order to set tokenbase the next time around.

Relative tokens allow multiple patches to be loaded without colliding with each other’s token assignments.

Table 1 shows the output of an evaluator for the 8051 family of microprocessors. The principle of operation is the same for other processors. This particular program lists prime numbers. It is represented by 25 bytes of tokenized code, which compiles to 65 bytes of 8051 executable code. Immediate tokens are italicized.

Since parameters are implicitly passed on the data stack, no extra code is needed for parameter handling such as moving data between registers. The object code consists mostly of subroutine calls to the binding table.

Table 1 is followed by a line-by-line description of what happens when this tokenized code is evaluated.

Table 1. Executable 8051 code created from tokenized source code. 



Ref
Source
Tokenized
Sample 8051 Disassembled Object Code

#
Text

Source

1
: PRIMES
EA 02 0E
1387 08

2
DO

F6

1388 12FEA0 PRIMES: LCALL 0xFEA0(xt:32) (%DO) 

138B 0213C7 LJMP 0x13C7

3
2

30

138E 12FE70 LCALL 0xFE70(xt:48) 2 

4
BEGIN

F1
 

5
I

28

1391 12FE88 LCALL 0xFE88(xt:40) I

6
OVER

36

1394 12FE5E LCALL 0xFE5E(xt:54) OVER

7
/MOD

B8

1397 12FCD8 LCALL 0xFCD8(xt:184) /MOD

8
PLUCK

37

139A 12FE5B LCALL 0xFE5B(xt:55) PLUCK

9
>=

5A

139D 12FDF2 LCALL 0xFDF2(xt:90) >=

10
OVER

36

13A0 12FE5E LCALL 0xFE5E(xt:54) OVER

11
AND

4E

13A3 12FE16 LCALL 0xFE16(xt:78) AND

12
WHILE

F4

13A6 12FEA9 LCALL 0xFEA9(xt:29) (%IF)

13A9 0213B3 LJMP  0x13B3

13
DROP

11

13AC 12FECD LCALL 0xFECD(xt:17) DROP

14
1+

3D

13AF A3     INC DPTR

15
REPEAT
F5

13B0 021391 LJMP 0x1391

16
NIP

32

13B3 08     INC R0 

13B4 08     INC R0 

17
IF

ED

13B5 12FEA9 LCALL 0xFEA9(xt:29) (%IF)

13B8 0213C1 LJMP 0x13C1

18
I

28

13BB 12FE88 LCALL 0xFE88(xt:40) I

19
.

02 09

13BE 12F8E5 LCALL 0xF8E5(xt:521) .

20
THEN

EE
 

21
LOOP

F8

13C1 12FE94 LCALL 0xFE94(xt:36) (%LOOP)

13C4 02138E LJMP 0x138E

22
;

EB

13C7 22 RET

1:
The word associated with : begins a new definition. It switches from interpret mode to compile mode by setting state. It also lays down a header byte, which initially contains nothing. It saves a pointer to the beginning of executable code (1388) and the current token number in a variable called last.

2:
DO compiles a call to its run-time action, (%DO). It also lays down a forward branch, 02 00 00 and saves the address of this code, 138B, on the stack so that the branch can be resolved later by LOOP. When (%DO) executes, it adds three to its return address so that the code at 138B is skipped.

3:
Since 2 is an often-used literal, it has its own word whose token number is 48. The evaluator compiles a call to the 48th element in the binding table.

4:
BEGIN leaves the current address, 1391, on the stack for later use by REPEAT.

5:
The evaluator compiles a call to the 40th element in the binding table.

6 .. 11:
The evaluator compiles calls to various elements in the binding table.

12:
WHILE compiles a call to its run-time action (%IF), lays down the unresolved forward branch 02 00 00 and saves the address of this code, 13A9, on the stack so that the branch can be resolved later by REPEAT.

13:
The evaluator compiles calls to the 17th element in the binding table.

14:
The evaluator lays down machine code that is the equivalent of 1+. In this implementation, it does this by seeing that 1+ has its macro flag set and copying 1+'s code.

15:
REPEAT resolves the address of the LJMP compiled by WHILE (step 12) and compiles a branch back to the address left by BEGIN (step 4).

16:
The evaluator lays down machine code that is the equivalent of NIP.

17:
IF compiles a call to its run-time action (%IF), lays down the unresolved forward branch 02 00 00 and saves the address of this code, 13B8, on the stack so that the branch can be resolved later by THEN.

18:
The evaluator compiles a call to the 40th element in the binding table.

19:
The evaluator compiles a call to the 521st element in the binding table.

20:
THEN resolves the address of the LJMP compiled by IF.

21:
LOOP compiles a call to its run-time action (%LOOP), compiles a branch back to the address left by DO (step 2) and resolves the forward branch compiled by DO. When (%LOOP) executes, it adds three to its return address (when the loop is finished) so that the code at 13C4 is skipped.

22:
; ends a definition. It compiles an exit by compiling a RET instruction or converting the last LCALL to a LJMP. It uses the information in the variable last (step 1) to modify the binding table. This word's execution address is stored at element 0x20E in the binding table. All words that reference token 0x20E will now use the updated code.

For comparison, here is a disassembly of the 68000 version of PRIMES, which compiled to 110 bytes (about 1:4 decompression).  Note that many words are inlined.

00022222 4EB90004F77E PRIMES: JSR 0x4F77E(xt:363) (%DO)

00022228 60000064            BRA 0x2228E

0002222C 4EB90004FE32        JSR 0x4FE32(xt:77) 2

00022232 2B07                MOVE.L D7,-(A5)

00022234 2E17                MOVE.L (A7),D7

00022236 2B07                MOVE.L D7,-(A5)

00022238 2E2D0004            MOVE.L 4(A5),D7

0002223C 4EB90004FC0A        JSR 0x4FC0A(xt:169) /MOD

00022242 2B07                MOVE.L D7,-(A5)

00022244 2E2D0008            MOVE.L 8(A5),D7

00022248 BE9D                CMP.L (A5)+,D7

0002224A 5FC7                SLE D7

0002224C 49C7                EXTB.L D7

0002224E 2B07                MOVE.L D7,-(A5)

00022250 2E2D0004            MOVE.L 4(A5),D7

00022254 CE9D                AND.L (A5)+,D7

00022256 2007                MOVE.L D7,D0

00022258 2E1D                MOVE.L (A5)+,D7

0002225A 4A80                TST.L D0

0002225C 6700000A            BEQ 0x22268

00022260 2E1D                MOVE.L (A5)+,D7

00022262 5287                ADDQ.L #1,D7

00022264 6000FFCC            BRA 0x22232

00022268 588D                ADDQ.L #4,A5

0002226A 2007                MOVE.L D7,D0

0002226C 2E1D                MOVE.L (A5)+,D7

0002226E 4A80                TST.L D0

00022270 67000012            BEQ 0x22284

00022274 2B07                MOVE.L D7,-(A5)

00022276 2E17                MOVE.L (A7),D7

00022278 4EB90004FB1A        JSR 0x4FB1A(xt:209) (.)

0002227E 4EB90004FB2C        JSR 0x4FB2C(xt:206) TYPE.

00022284 4EB90004F772        JSR 0x4F772(xt:365) (%LOOP)

0002228A 6000FFA0            BRA 0x2222C

0002228E 4E75                RTS

Firmware Studio provides a ROM builder and a tokenizer. The ROM builder is a compiler used to create processor-specific executable code for the target device. It converts Forth source code to machine code and builds an initialization table that is used to initialize the binding table. This code may be programmed into a ROM and run on the target processor. Once a ROM image is built, the token list can be saved to a file. The tokenizer uses this token list to determine the token values associated with various words. By supplying this file, the OEM enables the end user to customize the application without the need to supply proprietary source code.

The tokenizer is relatively simple. It parses space-delimited strings from the input stream (usually a file) and either performs a special action or compiles the token number associated with that string. Special actions include numbers, IF, THEN, :, etc.

For example, : gets the name of the definition from the input stream and adds it to the token list. It also lays down (appends to the ROM image) the token number for : and the token number for the new definition.

When a word is not recognized, it is converted to a number. If it isn't a valid number, the tokenizer quits with an error message. Numbers are compiled by laying down the token number of (LIT) and the number. (LIT) is an immediate word that gets the number from the input stream. When the evaluator executes (LIT), (LIT) either pushes the number onto the stack or compiles code to do so, depending on state. There are several versions of (LIT), used with numbers of different magnitudes. (LIT8), for example, takes an 8-bit number from the input stream and sign extends it before using it.

The tokenizer has no knowledge of the target processor. It only knows things like "the token number for OVER is 54". If the token assignments are the same for several different processors such that they all present the same virtual machine, the tokenized code will run on all of them. 

This is the idea behind IEEE1275 firmware, which provides plug-and-play capability for workstation plug-in cards. The driver for each card is loaded from a small on-card boot device. Achieving total portability of tokenized code for TOF is possible, although the diverse nature of small embedded systems works against this.

For the 8051 processor, there will be roughly a 1:2 ratio between the size of tokenized code and its executable equivalent. Also, the virtual machine (kernel and evaluator) requires about 10K bytes of ROM. Unused parts of the VM can be removed to shrink the footprint to under 7K. The missing parts could be compiled into RAM at run time.  In theory you could compile little applications on demand.  The evaluator on an 8051 is amazingly slow, about 1K tokens per second.  Although the theory is simple, the details gang up on you.  This throughput is good for loading patches and drivers for add-on hardware, but would be painful for big applications.  A 68K/Coldfire would have no such problem. 

Although TOF's virtual machine runs on an 8051 and 68K/Coldfire, it can provide an efficient Forth system for almost any processor. Every new VM inherits the powerful development and debugging tools of Firmware Studio.  Porting to a new processor does require some work, of course.

A monitor program (sometimes referred to in Firmware Studio as the backdoor debugger) is resident on the target device. Watching and debugging is done through this monitor program. 

The monitor program communicates with the host PC via a serial cable. It accepts one-byte commands from Firmware Studio. For each command it receives, it issues a one-byte response. This 1:1 correspondence eliminates the need for handshaking and interrupts on the target board. The target firmware can service the debugging port (usually a UART) whenever it's not doing anything else. The scheme is very non-intrusive for most applications.

There is a drawback in that Windows has sluggish turnaround response. If you look at the serial data on an oscilloscope, there seems to be a millisecond delay between the reception of a byte and the transmission of the next command. When it comes to communication performance, a pokey old 8051 runs circles around a P166 running Windows.

I have developed a 1-wire debugging protocol called EZbit and an EZbit to RS232 converter. EZbit works using very short pulses.  The target board sends pulses out an open-drain I/O pin.  At the trailing edge of each pulse, the converter creates an optional pulse.  The target’s outgoing pulse can be 250 to 6300 nsec wide, with a ‘0’ bit being twice as long as a ‘1’ bit. The EZbit converter tunes itself to your pulse width. It packs and unpacks these bits to form bytes and sends/receives from the host PC at 115K baud.  When the target board’s UART is unavailable or non-existent, you can use the EZbit interface to get into the system.

Hardware cost for EZbit on production boards is almost nothing and there are no interrupts and almost no time constraints, allowing EZbit to have the lowest priority of any task in the system.

The commands supported by the background monitor are processor-independent. They allow random, transparent access by Firmware Studio. Thus, Firmware Studio can watch and modify parameters on the target device while the target processor is running, without knowing what kind of processor it's connected to. 

Firmware Studio allows for interactive testing of words on the target processor and for loading replacement words. All of this is done live, while the target device is in normal operation.

The host PC talks to the target board via a serial port cable.  When you push the “Connect” button or do anything that requires the target, the host sends a 0xE0 byte at 115200 bps out the serial port and listens for a response.  COM1 through COM4 are scanned until a target board is found.  The target returns a 0xFF at its own baud rate, which the host uses to set its baud rate.

As of release 2.07, Internet support is included.  A host PC acts as a gateway to the target board.  A server program runs under Windows95/NT on the remote host.  At the local end, your PC runs Firmware Studio and talks to the remote target board over the Internet.  If you’re operating across firewalls, coordinate activity with the appropriate network administrators.

At the remote end, run HOST.EXE.  If you’re wired, it will tell you its IP address. Write this number down.  Press the “Plug” button to connect to the target board.  If the target board connects, press the Net button.  A 10-second delay is included to allow you to minimize the window.  Once it starts waiting for a connection, none of the window buttons (including minimize, close, etc.) will work.  This is inherent to the Windows winsock “accept” function, so you’ll just have to live with it.  Use the task manager to stop the server if you have to.

The following commands are available to set the IP address in Firmware Studio:

IP=
Sets the new IP address.  Example:  IP= 123.45.67.128

IP?
Displays the current IP address.

To connect over the Internet, run Firmware Studio and use IP= to enter the address of the remote server.  Click on Target Internet to select Internet connectivity, then press the “Connect” button or any button that talks to the target.

Getting Started with Firmware Studio 


 

Get the Firmware Studio archive from http://www.tinyboot.com.  The directory structure is:

.\

Main directory contains executable files and firmware source files

.\Source
Source files needed to re-build the executables

.\Docs 
Documentation: Manual

Unzip the archive to a directory on your PC, such as C:\FF. All executable and source files are present. Firmware Studio may be re-compiled by a public domain Forth system for Windows95/NT, called Win32Forth. It is available at http://www.forth.org in the compilers section. 

Create a shortcut that executes FF.EXE.  After creating the shortcut, right click on it and select Properties.  Click the Shortcut tab and Change Icon button and Browse button to choose one of Firmware Studio’s cute little icons.

After starting Firmware Studio, on the left side of the screen you’ll see the search order along with the contents of the data stack. The current vocabulary is in green, and the search order is in blue. There are several modes of operation, many of which place a special vocabulary (colored gray) at the top of the search order. 

Forth uses a simple syntax, which consists of keywords separated by spaces. An interpreter parses keywords from an input stream such as the console or a file. Firmware Studio has a number of different interpreters. They are used for normal Forth evaluation, building executable ROM code, tokenizing source code and interactive testing of the target board. Although they differ in function, the principle of operation is the same for all of them. The following table shows the available interpreter modes.

 

PRIVATE
MODE
Purpose
Top Vocabulary
Stack Display
Destination

NORMAL
Miscellaneous
---
Host
Image

BUILDING
Compile ROM code
BUILDER
Host
Image

TOKENIZING
Compile user code
TOKENIZER
Host
Image

TESTING
Test ROM code
TESTER
Target
Target

FORTHING
Test user code
TOKENIZER
Target
Target

 

Destination is where compiled code is ultimately sent. Display is which stack information you see on the left side of the console window. Respective shorthand for the above modes is NORMAL, BI, TI, TE and FI. Clicking the "Home" button gets back to normal.

The interpreters are relatively simple, but you need to understand how they work in order to use them (and the search order) effectively. A typical Forth interpreter works as shown below.

A variable called STATE determines whether the interpreter is interpreting code or compiling a new definition. STATE is manipulated by some compiling words and is generally not accessible to the user. For each keyword parsed from the input stream, the interpreter searches each vocabulary in the search order for the keyword. The following actions are taken:

 

Found:
 The keyword’s header contains an IMMEDIATE flag. If STATE Indicates interpret mode or the IMMEDIATE flag is set, the keyword is executed immediately. Otherwise it is compiled, i.e. its run-time semantics are added to the word being defined.

Not Found:
The keyword is converted to a number. If the number contains a decimal, it is considered a double number. In interpret mode, this number gets pushed onto the data stack. In compile mode, the number is compiled as code whose run time action is to push the number onto the data stack. If the keyword is not a number, an error message is generated.

 

Token structures have their own vocabularies on the host PC. For example, the CORE vocabulary contains the word DUP, whose run-time action is to load a pointer into a variable called PFA-local. When DUP is found in the CORE vocabulary and executed, it leaves a pointer in PFA-local. Since PFA-local is cleared before executing DUP, we can tell whether or not DUP was a token word. You have to pay attention to the search order, since a search could find the wrong DUP (like Forth's DUP) and cause an undesired effect.

Whenever a new token is defined, it's CREATEd in the Forth dictionary. Various parameters, such as the token number, address, file name, file position, and a comment field are saved for each token.

To get a feel for what's going on, FLOAD the file DEMO51.FF. This file generates a ROM image suitable for burning into EPROM and running on an 8051 microcontroller. If you prefer, load DEMOCF.FF (ColdFire) instead of DEMO51.FF. There will be several vocabularies listed on the left side of the screen. Since the normal interpreter will be selected, executing a word in the token list (such as DUP) won't have an apparent effect. You can reset the search order by clicking the "home" button (or hit F7), but don't click it yet.

Click the Token Catalog button, the one with the big magnifying glass. A list of all of the tokens in the search order will pop up. To sort the list, click on the field label along the top of the window. Clicking on Name sorts by Name, XT sorts by XT, etc.  Press Ctrl-Shift-G to create a glossary file from the catalog window contents and data from each word's source file.

This window lists all words in the search order shown at the left side of the console.  To change the search order, use PREVIOUS, ALSO, etc.  PREVIOUS removes the top vocabulary of the search order. <vocab> (where <vocab> is a vocabulary like CORE, USER, etc.) replaces the top of the search order. ALSO duplicates the top of the search order.  ONLY ALSO CORE clears the search order and places CORE in it. The foreground and background colors have special meanings. 

PRIVATE
Gray background:
Code is tokenized source.

Cyan background:
Code is executable machine code.

 

PRIVATE
Blue foreground:
Normal word.

Green foreground:
Call-only word. The compiler can't convert call to a jump.

Dark Red foreground:
Immediate word.

Bright Red foreground:
This word is in the watch list.

 

To disassemble a word, click on its XT or CFA. To browse the source of a word, click on its name. To add a word to the watch list, click on its datatype field. 

Disassemble the word TST1 using the Catalog window or typing SEE TST1. The source code for this word is:

: tst1 10 begin ?dup while 1- dup >digit emit repeat ;

 

This compiles to the following code:

 

13FB 12FED0 TST1: LCALL 0xFED0(xt:16) DUP

13FE 90000A MOV DPTR, #000A 

1401 12FE94 LCALL 0xFE94(xt:36) ?DUP 

1404 12FBBB LCALL 0xFBBB(xt:279) (%IF) 

1407 021419 LJMP 0x1419 

140A 12FE5E LCALL 0xFE5E(xt:54) 1- 

140D 12FED0 LCALL 0xFED0(xt:16) DUP 

1410 12FD05 LCALL 0xFD05(xt:169) >DIGIT 

1413 12FCD5 LCALL 0xFCD5(xt:185) EMIT 

1416 021401 LJMP 0x1401 

1419 22     RET 

 

Notice that the calls are all to the same region of memory. The addresses are all destinations in a table of LJMP instructions, called the binding table. The disassembler calculates the xt (eXecution Token) and label from the address.

The binding table, kept in RAM, provides a lot of flexibility. In the above example, if the address of a word other than 1- is written to location 0xFE5F, the behavior of TST1 and all other words that use 1- is immediately altered. 

The ROM-building mode is entered using the BUILDING or BI directive.

The "builder" interpreter, used for creating an executable ROM image, compiles to the ROM image instead of the Forth dictionary and places a special vocabulary called BUILDER at the top of the search order. This interpreter may be found in the file TBUILD.G. 

This interpreter works similar to the one described previously, but with a few exceptions. For example, a target word can't be executed on the host since its code is usually for a different processor. An exception is a token whose run-time action returns a literal. These can be simulated since their values are stored with the other token information.

Some compiling words, like IF and THEN, are in the BUILDER vocabulary at the top of the search order. During compilation, they are executed only if they are immediate. Otherwise, the order is searched again but without the BUILDER vocabulary. This search is expected to turn up a token or a number. The token number is compiled into the ROM image. The target address compiled depends on a flag called DYNAMIC?. This flag is set using the DYNAMIC directive and cleared using the STATIC directive. In dynamic mode, the target address is computed using the xt of the token so as to point to the binding table. In static mode, the target address points to the actual executable code of the token.

With subroutine threading, a definition can be ended using a return instruction. If possible, the last call is converted to a jump to save an instruction and a few clock cycles. This trick can't be used on calls to words that manipulate the return stack. These words are marked with a call-only flag to prevent this.

Much of the kernel is defined in static mode, since it will be needed to initialize the binding table. Words using dynamic binding are useless until the binding table is initialized. The BINDINGS, directive builds a table of executable addresses. The phrase  PCREATE INITTABLE BINDINGS, is used near the end of the ROM source (see END.F51) and compiles the binding initialization table to the ROM image. At startup, the data at INITTABLE is used to create the LJMP instructions that form the binding table.

The tokenizing mode is entered using the TOKENIZING or TI directive.

The "tokenizer" interpreter, used for creating a tokenized bytecode image, compiles to the ROM image instead of the Forth dictionary and places a special vocabulary called TOKENIZER at the top of the search order. This interpreter may be found in the file TTOKEN.G. 

The tokenizer interpreter is the simplest of them all, since it doesn't distinguish between compile and interpret modes. For each keyword taken from the input stream, it either executes the keyword or compiles bytecode for a number. Most keywords are going to be token header words, which don't change the stack but leave a pointer to header data. If a pointer is left, the token's xt is converted to a bytecode and compiled to the image.

To compile a number, the bytecode for (LIT) is compiled, followed by the number. On the target, the word (LIT) is an immediate word that takes its data from the input stream. There are several versions of (LIT), such as (LIT8) and (LIT16) that take an 8-bit or 16-bit argument and sign extend it if necessary.

There is a token decompiler that displays tokenized code. Try disassembling a tokenized word by clicking on its xt in the Catalog window or by using the SEE command. SEE STARS decompiles a single word, while SEE MYPROGRAM decompiles an entire tokenized program. For example:

see stars 

1436 : STARS 0 DO STAR LOOP ; 

 

see myprogram

1422 program: checksum=2394 length=24

42 CONSTANT ASTERISK 

142F : STAR ASTERISK EMIT ;

1435 

1436 : STARS 0 DO STAR LOOP ;

143E END

 

Myprogram is a program structure that contains a byte count and checksum followed by the tokenized code. The word EVALUATE in the kernel verifies the checksum before attempting to evaluate any bytecode.

If you want to examine the raw data not shown by SEE, click on the IMG HEX button to open the image's hex dump window. Hit F4 to start the dump at 0x1000 and pull the vertical scroll bar down until address 0x1422 (or whatever the address is) is in view.

You can VIEW any word using the Winview editor.  Shift-F9 enters edit mode, or you can toggle modes using the right-click menu.

All of this can be done without a target board present.  You’ll need a target board connected to see the debugging features of Firmware Studio.  This is described in the next section.

The following chapters are mostly processor specific. Go to the one that covers your target processor.
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