Firmware Studio User’s Manual

Appendix L. Local Variables

Local Variables

In Forth, parameters are passed implicitly on the data stack. If there are more than two or three incoming parameters, you can end up generating a lot of stack noise (also called stacrobatics). You can use the return stack to simplify stack manipulation by transferring some data to the return stack. If you use the return stack for temporary storage, it is very important to restore it to its initial state. Any imbalance will most likely crash the system. Treat the return stack like a sharp knife.

DO...LOOP also uses the return stack. If you use >R before a DO loop, R@ will return a different result inside the loop. You can use the return stack inside a DO loop as long as you take off whatever you put on before LOOP.

If stack manipulation gets tedious, you probably haven’t factored the problem properly. It should cause you to ask, “What can I factor out of this”? There are some situations where the answer is “Nothing”. For cases like these, there is local variable support.

The ANS standard provides for simple local variable support. At the beginning of a subroutine, parameters may be moved to the return stack. Locals are variables that reside on the return stack. They act like VALUEs in that you use TO to store to them. At the end of the subroutine, the return stack is cleaned up. Locals are basically a functional replacement for return stack manipulation.

The proposed ANS syntax is LOCAL| arga argb |
where arga is the value on the top of the data stack and argb is next on the stack.

This is backwards from the stack picture comment (argb arga -- ?).

We use a modified version whose syntax is:

· { argb arga \ argc -- }
Here, { behaves like LOCAL| except that it reverses the stack order and allows comments. So, it looks like a stack picture. The example shown above is handled as follows:

1. Uninitialized storage is allocated for argc on the return stack. Marked by \ .

2. Arga and Argb are removed from the data stack and placed on the return stack.

3. Everything between –- and } is treated as a comment.

Locals are especially useful when working with data points. For example, imagine coding the following with the usual stack manipulation words:

: distance { x0 y0 x1 y1 – dist } \ d = sqrt(deltaX^2+deltaY^2)

x1 x0 – abs dup um*

y1 y0 – abs dup um* d+ sqrt ;

Here is an example showing what the 68K builder compiles when locals are used.

: dum+ { a b \ c -- sum } \ a version of +

a b + to c

c ;

DUM+: SUBQ.L #4,A7

Uninitialized storage for c

 MOVE.L D7,-(A7)
Push a and b onto the return stack.
 MOVE.L (A5)+,-(A7)

 MOVE.L (A7),D7
Fetch a

 MOVE.L D7,-(A5)

 MOVE.L 4(A7),D7
Fetch b

 ADD.L (A5)+,D7
Add

 MOVE.L D7,8(A7)
TO c

 MOVE.L 8(A7),D7
Fetch c

 ADDQ.L #8,A7

; clears the return stack.
 ADDQ.L #4,A7

 RTS

It is assumed that the CPU will use stack-relative addressing to access locals. R@, R>, R> and other return stack manipulators may throw off the indexing so be aware of this.

The compiler compensates inside of DO..LOOP structures so that locals may be used inside of DO loops.

Locals support for various CPUs are handled via four defered words:

Local-begin
Compiles code to allocate uninitialized storage and transfer data to the return stack.

Local-end
Compiles code to remove data from the return stack.

Local-fetch
Compiles code to fetch a local variable to TOS.

Local-store
Compiles code to store TOS to a local variable.

Local-base
Compiles code to fetch the base address of a local array.

For 8051, AVR and 68K CPUs, locals need the files LOCALS.F51, LOCALS.FAR and LOCALS.FCF, respectively. They contain run-time code for the above-named words. For the 8051 and 68K, they also contain support for locals in tokenized code.

Firmware Studio and Win32forth support both syntaxes. The { } syntax is easily implemented and fairly common, so you should be safe using it. In other words, your code won’t be locked into a particular Forth.

On the 68K, TOF allows a word to allocate an array of cells on the data stack.

· {CELLS} (#cells --)
This is an immediate word that compiles code to return a base address. For example:

: FOO { \ mydata -- }

 [16] {cells} to mydata

;

pg L.1

