Firmware Studio User's Manual

Appendix A. ROM Builder Glossary

BUILDER glossary

When in BUILDING mode, the BUILDER lexicon is in effect. While interpreting, these words take precedence over anything else in the search order. While compiling, only those words having a compile action take precedence. For example, : FOO ALIGN ; expects ALIGN to be a target word.

Stack Picture:
Compile

Host interpret
Target Interpret

'

(<name> -- xt)

Get the token# of a word. "Tick".

+LOOP

(addr f --)

(n -- | R: loop --)

Compile code to end a DO..LOOP

,

(x --)

Append a cell to the dictionary. Use RAM and ROM directives to select the address space: RAM mode lays down a cell to the data image that will be used by the startup code to initialize RAM data space. ROM mode appends a cell to the ROM image.

,"

(<string"> --)

Appends a counted string to the dictionary. The incoming string is delimited by a quote.

."

(<string"> --)
(<string"> --)

(--)

Compiles a string to the ROM image along with code to invoke TYPE. If not compiling, types string on the console like Forth79.

2CONSTANT

(d <name> --)
(-- d)

Compile code to return a double literal.

2VARIABLE

(<name> --)

(-- addr)

Compile code to return the address of a double variable.

:

(<name> -- f)
(? -- ?)

Start a definition. Compiles a header byte to the ROM image. The new definition is placed in the current (green) vocabulary.

;

(f --)

End a definition. Compiles a return instruction or, if possible, converts the previous call to a jump instruction.

?DO

(-- addr f)

(hi lo -- | R: -- loop)

Compile code to start a ?DO..LOOP structure.

AFTER:

(<name> -- f)
(? -- ?)

Extends a definition that already exists. Compiles a header byte to the ROM image. ; will compile a jump to the old definition. Usage: after: INIT your-code ;
This can be used to extend startup or other code. Ideally, a hardware device should be supported by a single file. In OO lingo, you could say the methods for this object are contained in one file. The file to support a UART chip, for example, would extend startup code to initialize certain registers. See BEFORE:.

AGAIN

(addr f --)

(--)

Compile a backward unconditional branch for BEGIN..AGAIN structure.

AHEAD

(-- addr f)

(--)

Compile a forward unconditional branch. Similar to IF.

ALIGN

(--)

Adjust HERE upward to bring it to the next aligned address.

ALIGNED

(addr -- addr')

Adjust addr upward to bring it to the next aligned address.

ALLOT

(n --)

Allocate n bytes in the dictionary. If RAM mode, these bytes are set to zero.

ALSO

Duplicate the top of the search order.

ARRAY

(n <name> --)
(-- addr)

Compile code to return the address of an array of size n. Allots n bytes of storage.

ASSEMBLE

(-- f)

Starts in-line compilation of machine code. Usage:

In-line code:

: FOO swap [assemble your_code_here c;] over ;

Macro:

assemble your_code_here c; macro: YourMacro

code FOO YourMacro next c;

BEFORE:

(<name> -- f)
(? -- ?)

Extends a definition that already exists. Compiles a header byte and a call to the old definition to the ROM image. Usage: before: INIT your-code ;

See AFTER:.

BEGIN

(-- addr f)

Marks the beginning of a BEGIN UNTIL or BEGIN WHILE REPEAT structure.

BINDINGS,

Appends a data structure to ROM. The first cell of the structure contains the number of entries. The second cell contains the address of the executable code associated with token 0. Subsequent cells are addresses of token1 to token n-1.

C"

(<string"> --)
(-- addr)

Appends a counted string to the dictionary. The incoming string is delimited by a quote. Runtime code skips over the data and returns its address.

C(

(<string> --)

Changes the comment field of the last defined token to the string delimited by close-parenthesis. The comment field is typically 32 characters maximum.

C,

(c --)

Appends a byte to the dictionary.

CALL

(<name> --)

(? -- ?)

Compiles a call to an external procedure.

CALL-ONLY

Sets the call-only bit in the header of the last defined word. This bit prevents ; from converting a call to this word to a jump.

CASE

(-- addr f)

Marks the beginning of a CASE .. OF .. ENDCASE structure.

CFA

(<name> -- addr)

Gets the actual address of a word.

CODE

(<name> -- f)
(? -- ?)

Starts a code definition. Compiles a header byte to the ROM image. The new definition is placed in the current (green) vocabulary.

CODE-BOUNDS?

(-- lo hi)

Returns the lower and upper limit of the user's code space.

CONSTANT

(x <name> --)
(-- x)

Compiles code to return a literal.

CREATE

(<name> --)

(-- addr)

Creates a pointer for data structure in data space. Compiles code to return the address of the next data. On processors other than AVR, compilation is placed in RAM mode. That means that c, and , will lay down data structures to RAM. Startup code will initialize this RAM. You can conserve code space by using PCREATE.

DATA-BOUNDS?

(-- lo hi)

Returns the lower and upper limit of the user's data space.

DECIMAL

Uses 10 as the host's radix for numeric conversion.

DEFER

(<name> --)

Creates a token but doesn't lay down any data for it. IS will be used later to bind code to this token.

DEFINITIONS

Makes the top vocabularty of the search order the current vocabulary.

DO

(-- addr f)

(hi lo -- | R: -- loop)

Compile code to start a DO..LOOP structure.

DYNAMIC

Switches to dynamic mode, which causes all calls to go through the binding table.

ELSE

(a1 f1 -- a2 f2)

Compiles forward branch, resolve IF's forward branch as part of an IF .. ELSE .. THEN structure.

END*CODE

Does nothing. This word is used to embed assembly code in tokenized bytecode.

ENDCASE

(addr f --)

Finishes the CASE .. OF .. ENDOF .. ENDCASE structure.

ENDIF

(addr f --)

Same as THEN. Resolves forward branch left by IF or ELSE.

ENDOF

(a1 f1 -- a2 f2)

Resolves OF branch, lays down forward branch to ENDCASE.

EXIT

(--)

Exits a definition. Compiles a return instruction or changes the last call instruction to a jump.

FI

Enters the interactive Forth mode.

FORTHING

Enters the interactive Forth mode.

HEADERS-OFF

Turns off header generation. Saves a byte or two per word.

HEADERS-ON

Turns on header generation. Any word without a header can't be used by the evaluator. Useful for words defined after the binding table has been resolved.

HERE

(-- addr)

Returns the address of the next free byte in code or data space, depending on whether you're in RAM or ROM mode.

HEX

Uses 16 as the host's radix for numeric conversion.

HOST

Enters the host's Forth mode.

IF

(-- addr f)

(f --)

Compiles a conditional forward branch.

IMMEDIATE

Sets the immediate bit in the header of the last defined word. This bit forces this word to execute instead of being compiled.

IS

(xt <name> --)

Assigns xt's action to <name>.

ISA

(addr <name> --)

Assigns the action at addr to <name>.

LITERAL

(x --)

(-- x)

Compiles code to push a literal onto the stack.

LOCO

(<name> --)

Begin a local CODE definition. Works like CODE but doesn't create a header or assign a token. Instead, it creates an assembler label.

LOOP

(addr f --)

(n -- | R: loop --)

Compile code to end a DO..LOOP

MACRO

Sets the macro bit in the header of the last defined word. This bit enables this word to copied into the dictionary as inline code instead of being invoked with call instruction.

MULTI

(-- a1 f1 a2 f2)

(| R: x -- x-1)

The MULTI ... REPEAT structure is equivalent to

BEGIN R@ 0< 0= WHILE R> 1- >R ... REPEAT.

It's much more efficient than ?DO ... LOOP.

NOBIND

Sets the nobind bit in the header of the last defined word. This bit forces calls to this word to not use the binding table.

OF

(-- addr f)

(n1 n2 -- n1 | m m --)

Compiles code for OF, which skips the OF .. ENDOF phrase if n1<>n2.

ONLY

Clears the search order so it only contains the HOME wordlist.

OPTIM

(n --)

(n --)

Stores n to the byte immediately after the header byte. On some processors, a second byte is necessary for alignment reasons. This byte can be used for compiler optimization information.

ORG

(addr --)

Sets the pointer to the next free byte in the dictionary.

PCREATE

(<name> --)

(-- addr)

Creates a pointer for data structure in program space. Compiles code to return the address of the next available code byte. If @ and ! can access program space, you can use PCREATE instead of CREATE to compile data structures to ROM, thereby saving some RAM space.

PREVIOUS

Drops the top vocabulary in the saerch order.

RAM

Set RAM mode, which causes comma and related words to append data to data space. Startup code will inilialize RAM from this data.
Some builder words leave the compiler in ROM mode, so when in doubt use RAM.

RECURSE

Compiles a static call to the current definition.

REPEAT

(a f --)

Compile backward branch to resolve a BEGIN .. WHILE .. REPEAT structure.

RETRY

Compiles a jump to the current definition.

ROM

Set ROM mode, which causes comma and related words to append data to the ROM image space.

ROM-BOUNDS?

(-- lo hi)

Returns the lower and upper limit of the ROM image space.

S"

(<string"> --)
(-- addr len)

Appends a string to the dictionary. The incoming string is delimited by a quote. Runtime code skips over the data and returns its address and length.

STATIC

Switches to static mode, which causes all calls to be direct.

STRING

(len <name> --)
(-- addr len)

Compile code to return the address and length of an array of size len. Allots len bytes of storage.

TE

Enters testing mode. For interactive testing of target words.

TESTING

Enters testing mode. For interactive testing of target words.

TEST{

Marks beginning of a block of test code. Forces STATIC mode

THEN

(addr f --)

Resolves forward branch left by IF or ELSE.

TI

Enters tokenizing mode.

TO

(<name> --)

(--)

Compiles code to store to a value.

TO XYZ compiles to Call XYZ Call (%TO!).

TOKENIZING

Enters tokenizing mode.

UNTIL

(addr f --)

(f --)

Compiles a conditional backward branch to resolve a

BEGIN .. UNTIL structure.

VALUE

(x <name> --)
(-- x)

Compiles code to return a value. Unlike a CONSTANT, you can use TO to change its value.

VALUES,

Appends a data structure to ROM. The first cell of the structure contains the start address of initialized RAM. The second and third cells contain a repeat count and a value. Subsequent cell pairs contain further run-length encoded data. The structure is terminated by a repeat count of zero.

VARIABLE

(<name> --)

(-- addr)

Compiles code to return the address of the next data and allocates aligned data space storage for a cell.

VOCABULARY

(<name> --)

Creates a word that replaces the top of the search order with its own vocabulary.

W,

(n --)

Appends a 16-bit value to the dictionary.

WHILE

(a1 f1 -- a2 f2 a1 f1) ---

(f --)

Compiles a conditional forward branch as part of a

BEGIN .. WHILE .. REPEAT structure.

WORDS

Displays all words in the vocabulary at the top of the search order.

[

Switches to interpret mode. A typical usage is

: Foo ... [YourCalculation] Literal ... ;

[']

(<name> --)

(-- xt)

Compile code that returns the token# of a word.

[CFA]

(<name> --)

(-- addr)

Compile code that returns the execution address of a word.

[CHAR]

(<char> --)

(-- c)

Compile code that returns a character.

[COMPILE]

(<name> --)

(-- addr)

Compile code that returns the execution address of a word.

[DYNAMIC]

Switches to dynamic mode, which causes all calls to go through the binding table. It has the same effect regardless of STATE.

[STATIC]

Switches to static mode, which causes all calls to be direct. It has the same effect regardless of STATE.

]

Enters compilation mode.

}TEST

Downloads image code between TEST{ and }TEST to the same address on the target board. Then enters TESTING mode.

PAGE
pg A.7

